Web appendix
Model checking – useful diagnostic plots
(1) Scatter plot of deviance residuals vs time. 
A plot of residuals will ideally show an even band of points with no particular pattern over time, and around 95% of values lying between the values ±1.96 (See Figure A1 for such a plot from the London data analysis). Deviations from this ideal may indicate, for example, that important variables are missing from the model, or that long-term patterns have been inadequately controlled for.
(2) Partial autocorrelation function plot of the deviance residuals
This plot (available in major statistical packages) estimates the degree of correlation between nearby days (controlling for other nearby days). Ideally there should be little remaining autocorrelation in the deviance residuals, because we hope that the variables in the model explain most of the autocorrelation in the original outcome series. However it is common for some autocorrelation to remain, particularly at short lags. This represents a technical violation of the Poisson model assumptions, and as a sensitivity analysis or routinely, the residual autocorrelation can be explicitly modelled – for details, see Brumback et al.1 In the London data, there appeared to be a high degree of autocorrelation at a lag of 1 day (Figure A2a). Adding the 1-day lagged deviance residual to the model is one simple modelling approach. Here, this reduced autocorrelation (Figure A2b) and, reassuringly, the estimated exposure-outcome association and its standard error changed very little. In applications where residual autocorrelation is a serious concern, more sophisticated modelling methods exist, based on conditional (random effects) or marginal models (generalised estimating equations).1, 2 If the outcome is counts of an infectious disease, residual autocorrelation can be much stronger than in our example and, with changes in numbers of susceptibles, can require special methods.


Further relevant papers
General references on time series regression applications in health research:
Peng and Dominici 2008 - Statistical Methods for Environmental Epidemiology with R - A Case Study in Air Pollution and Health3
Time series for short-term effects:
Dominici et al 2003 - Health effects of air pollution: a statistical review4
Touloumi et al 2004 - Analysis of health outcome time series data in epidemiological studies5
Splines and smoothing techniques:
Wood 2006 -  Generalized Additive Models: an Introduction with R6
Ruppert et al 2003 - Semiparametric Regression7
Schimek 2009 - Semiparametric penalized generalized additive models for environmental research and epidemiology8
Distributed lag models:
Schwartz 2000 - The distributed lag between air pollution and daily deaths9
Gasparrini et al 2010 - Distributed lag non-linear models10
Gasparrini 2011 – Distributed lag linear and non-linear models in R: the package dlnm11
Model selection:
Peng et al 2006 - Model choice in time series studies of air pollution and mortality12
Touloumi et al 2006 - Seasonal confounding in air pollution and health time-series studies: effect on air pollution effect estimates13
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Figure A1: Plot of deviance residuals over time (London data)
[image: C:\DROPBOX\KB\iFolder\MAIN\Adhoc\IJE education corner paper\appendixanalysis\FIG_A1_dresvstime.emf]
Notes:
- the deviance residuals relate to the unconstrained distributed lag model with ozone (lag days 0 to 7 inclusive), adjusted for temperature at the same lags
- the spike in the plot of residuals relate to the 2003 European heat wave, and indicate that the current model does not explain the data over this period well; more flexible modelling of the temperature-mortality relationship (not shown) results in this spike in residuals disappearing 


Figure A2: Partial autocorrelation plots of the deviance residuals (London data)
[image: C:\DROPBOX\KB\iFolder\MAIN\Adhoc\IJE education corner paper\appendixanalysis\FIG_A2_PAC.emf]
Note: the deviance residuals relate to the unconstrained distributed lag model with ozone (lag days 0 to 7 inclusive), adjusted for temperature at the same lags


image1.emf
-5

0

5

10

deviance residual

01jan2002 01jan2003 01jan2004 01jan2005 01jan2006 01jan2007

date


image2.emf
-0.05

0.00

0.05

0.10

0.15

Partial autocorrelations of dres

0 10 20 30 40

Lag

95% Confidence bands [se = 1/sqrt(n)]

(a) From original model

-0.10

-0.05

0.00

0.05

Partial autocorrelations of dres

0 10 20 30 40

Lag

95% Confidence bands [se = 1/sqrt(n)]

(b) From model adjusted for residual autocorrelation



Web appendix

 

Model checking 

–

 

useful 

d

iagnostic plots

 

(1)

 

Scatter plot of deviance residuals vs time. 

 

A plot of residuals will ideally show an even band of points with no particular pattern over 

time, and around 95% of values lying between the values 

±

1.

96 (See Figure A1 for such a 

plot from the London data analysis). Deviations from this ideal may indicate, for example, 

that important variables are missing from the model, or that long

-

term patterns have been 

inadequately controlled for.

 

(2)

 

Partial autocorre

lation function plot of the deviance residuals

 

This plot (available in major statistical packages) estimates the degree of correlation 

between nearby days (controlling for other nearby days). Ideally there should be little 

remaining autocorrelation in the 

deviance residuals, because we hope that the variables in 

the model explain most of the autocorrelation in the original outcome series. However it is 

common for some autocorrelation to remain, particularly at short lags. This represents a 

technical violati

on of the Poisson model assumptions, and as a sensitivity analysis or 

routinely, the residual autocorrelation can be explicitly modelled 

–

 

for details, see Brumback 

et al.

1

 

In the London data, there appeared to be a high degree of autocorrelation at a lag 

of 

1 day

 

(Figure A2a)

. A

dding the 1

-

day lagged deviance residual to the model

 

is one simple 

modelling 

approach. Here, this

 

reduced autocorrelation (Figure A2b) and, reassuringly, the 

estimated exposure

-

outcome

 

association 

and its standard error 

changed ver

y little. 

In 

applications where residual autocorrelation is a serious concern, more sophisticated 

modelling methods exist, based on conditional (random effects) or marginal models 

(generalised estimating equations).

1

, 

2

 

If the outcome is count

s

 

of an infectious disease

,

 

residual autocorrelation can be m

uch stronger 

than in our example 

and, with changes in 

numbers of susceptibles, can require special methods.

 

 

 

