One Earth, Volume 7

Supplemental information

Ozone-related acute excess mortality projected

to increase in the absence of climate and air

quality controls consistent with the Paris Agreement

Nina G.G. Domingo, Arlene M. Fiore, Jean-Francois Lamarque, Patrick L. Kinney, Leiwen Jiang, Antonio Gasparrini, Susanne Breitner, Eric Lavigne, Joana Madureira, Pierre Masselot, Susana das Neves Pereira da Silva, Chris Fook Sheng Ng, Jan Kyselý, Yuming Guo, Shilu Tong, Haidong Kan, Aleš Urban, Hans Orru, Marek Maasikmets, Mathilde Evangelia Samoli, Pascal. Klea Katsouyanni, Matteo Scortichini, Massimo Stafoggia, Masahiro Hashizume, Barrak Alahmad, Magali Hurtado Diaz, César De la Cruz Valencia, Noah Scovronick, Rebecca M. Garland, Ho Kim, Whanhee Lee, Aurelio Tobias, Carmen Íñiguez, Bertil Forsberg, Christofer Åström, Martina S. Ragettli, Yue Leon Guo, Shih-Chun Pan, Valentina Colistro, Michelle Bell, Antonella Zanobetti, Joel Schwartz, Alexandra Schneider, Ana M. Vicedo-Cabrera, and Kai Chen

Fig S1. Raw simulated, observed, and bias corrected O₃ concentrations averaged over the 406 cities for each global chemistry-climate model in the present period. (A) CESM2, (B) EC-Earth3-AerChem, (C) GFDL-ESM4, (D) MPI-ESM-1-2-HAM, and (E) UKESM-1-0-LL.

Fig S2. O₃ bias over the 406 cities average across the global-chemistry climate models in the present period. Global chemistry-climate models include CESM2, EC-Earth3-AerChem, GFDL-ESM4, MPI-ESM-1-2-HAM, and UKESM-1-0-LL.

Fig S3. Absolute change in MDA8 O₃ concentration at 406 locations in 20 countries between the present (2010-2014) and future (2050-2054) time periods. (A) absolute change in O₃ concentrations under SSP 1-2.6, (B) absolute change in O₃ concentrations under SSP 2-4.5, (C) absolute change in O₃ concentrations under SSP 3-7.0, and (D) absolute change in O₃ concentrations under SSP 5-8.5. O₃ concentration is the maximum daily 8-hour average.

Fig S4. Change in population and mortality rates in 20 countries. Change in national population under (A) SSP 1-2.6, (C) SSP 2-4.5, (E) SSP 3-7.0, and (G) SSP 5-8.5. Change in national mortality rates under (B) SSP 1-2.6, (D) SSP 2-4.5, (F) SSP3-7.0, and (H) SSP 5-8.5.

Table S1. Change in O_3 concentrations between present (2010-2014) and future (2050-2054) time periods. City-level changes in O_3 concentrations are aggregated to the country level and rounded to the nearest whole number.

		O ₃ concentrations (μg/m ³)				
Country	Number of cities	Present data	SSP 1-2.6	SSP 2-4.5	SSP 3-7.0	SSP 5-8.5
Australia	3	34	29	33	36	35
Canada	26	81	84	88	87	89
China	3	58	68	69	63	63
Czech Republic	1	75	58	76	82	79
Estonia	4	57	50	56	60	59
France	18	70	53	66	75	75
Germany	12	62	52	63	71	68
Greece	1	74	54	69	78	81
Italy	13	72	49	66	79	79
Japan	43	80	77	87	88	90
Mexico	8	133	132	135	141	131
Portugal	6	76	59	73	79	78
South Africa	4	78	73	73	81	81
South Korea	7	69	63	72	74	75
Spain	47	73	56	71	77	77
Sweden	1	61	53	62	65	67
Switzerland	8	74	54	70	82	78
Taiwan	3	109	95	108	113	107
UK	15	59	47	59	64	61

USA	183	84	85	92	89	92

		O ₃ -related mortality (deaths/yr)		
Global climate model	City	Raw simulated O ₃	Bias corrected O ₃	
CESM2	Valley of Mexico, Mexico	323	535	
EC-Earth3-AerChem	Valley of Mexico, Mexico	67	530	
GFDL-ESM4	Valley of Mexico, Mexico	11	614	
MPI-ESM-1-2-HAM	Valley of Mexico, Mexico	28	584	
UKESM-1-0-LL	Valley of Mexico, Mexico	0	524	
CESM2	Los Angeles, USA	253	223	
EC-Earth3-AerChem	Los Angeles, USA	227	320	
GFDL-ESM4	Los Angeles, USA	31	303	
MPI-ESM-1-2-HAM	Los Angeles, USA	227	178	
UKESM-1-0-LL	Los Angeles, USA	0	225	
CESM2	Tokyo, Japan	203	133	
EC-Earth3-AerChem	Tokyo, Japan	312	151	
GFDL-ESM4	Tokyo, Japan	218	144	
MPI-ESM-1-2-HAM	Tokyo, Japan	82	162	
UKESM-1-0-LL	Tokyo, Japan	63	193	
CESM2	Riverside, USA	118	132	
EC-Earth3-AerChem	Riverside, USA	97	123	
GFDL-ESM4	Riverside, USA	6	157	
MPI-ESM-1-2-HAM	Riverside, USA	105	124	
UKESM-1-0-LL	Riverside, USA	0	151	

Table S2. O₃-related mortality by global climate model in 4 cities in the present (2010-2014) period.

Table S3. Global climate model and ensemble members.

Global climate model	Scenario	Ensemble member	Citation
CESM2	Historical	ic1 $-$ 001, ic1 $-$ 002, ic1 $-$ 003, ic1 $-$ 004, ic2 $-$ 001, ic2 $-$ 002, ic2 $-$ 003, ic2 $-$ 004, ic3 $-$ 001, ic3 $-$ 002, ic3 $-$ 003, ic3 $-$ 004, ic4 $-$ 001, ic4 $-$ 002, ic4 $-$ 003, ic4 $-$ 004	1
CESM2	SSP 3-7.0	001, 002, 003, 004	2
EC-Earth3-AerChem	Historical	r1i1p1f1, r4i1p1f1	3
EC-Earth3-AerChem	SSP 3-7.0	r1i1p1f1, r4i1p1f1	4
GFDL-ESM4	Historical	r1i1p1f1	5
GFDL-ESM4	SSP 1-2.6	r1i1p1f1	6
GFDL-ESM4	SSP 2-4.5	r2i1p1f1, r3i1p1f1	7
GFDL-ESM4	SSP 3-7.0	r1i1p1f1	8
MPI-ESM-1-2-HAM	Historical	r1i1p1f1, r2i1p1f1, r3i1p1f1	9
MPI-ESM-1-2-HAM	SSP 3-7.0	r1i1p1f1, r2i1p1f1, r3i1p1f1	10
UKESM-1-0-LL	Historical	r1i1p1f2	11
UKESM-1-0-LL	SSP 1-2.6	r1i1p1f2	12
UKESM-1-0-LL	SSP 2-4.5	r1i1p1f2	13
UKESM-1-0-LL	SSP 3-7.0	r1i1p1f2	14
UKESM-1-0-LL	SSP 5-8.5	r1i1p1f2	15

References

- 1. Fiore, A. M., Hancock, S., Lamarque, J. F., Correa, G., Chang, K. L., Ru, M., Cooper, O., Gaudel, A., Polvani, L., Sauvage, B., and Ziemke, J. (2022). Understanding recent tropospheric ozone trends in the context of large internal variability: A new perspective from chemistry-climate model ensembles. Environ. Res.: Climate *1*, 025008.
- 2. Personal communication with Dr. Jean-Francois Lamarque.
- EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP historical (2020). Version 20200624 (Earth System Grid Federation). https://doi:10.22033/ESGF/CMIP6.4701.
- EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 ScenarioMIP ssp370 (2020). Version 20220630 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.4885
- Krasting, J.P., John, J.G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N.T., Balaji, V., Durachta, J., et al. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Version 20190726 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.8597.
- John, J.G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Wilson, C., Zadeh, N.T., Dunne, J.P., et al. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp126. Version 20221210 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.8684.
- John, J.G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Wilson, C., Zadeh, N.T., Dunne, J.P., et al. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp245 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.8686.
- John, J.G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Wilson, C., Zadeh, N.T., Dunne, J.P., et al. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp370 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.8691.
- Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D.S., Tegen, I., Wieners, K.-H.; Mauritsen, T., Stemmler, I., Barthel, S., et al. (2019). HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.5016.
- Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P.T., Morgenstern, O., Nowack, P., et al. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmospheric Chem. Phys. *21*, 5015-5061. https://doi.org/10.5194/acp-21-5015-2021.
- Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C. (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.6113.
- Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and Kuhlbrodt, T. (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp126 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.6339.
- Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and Kuhlbrodt, T. (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp245 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.6339.
- Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and Kuhlbrodt, T. (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp370 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.6347.
- Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and Kuhlbrodt, T. (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp585 (Earth System Grid Federation). https://doi.org/10.22033/ESGF/CMIP6.6339.