Supplementary Materials

Table of Contents

1. Methods	2
1.1 Mortality data	2
1.2 Demographic, socioeconomic status, and population health variables	3
1.3 Community-specific model	3
1.4 Sensitivity analyses	4
1.5 Calculation of attributable fraction	4
2. Results	6
Table S1. Descriptive statistics of the 761 communities by country/territory	6
Table S2. I ² statistics and results of Cochran's Q tests of meta-analyses	8
Table S3. Results of sensitivity analyses by changing maximum lag days and degrees of the lag-response associations of flood exposure	freedom of
Table S4. Results of sensitivity analyses by changing the lag-exposure-response ass temperature	ociations of
Table S5. Annual flood-attributable deaths in communities impacted by floods, by coun	try/territory 12
Figure S1. Köppen climate classifications in the 761 communities.	14
Figure S2. Proportions of older population in the 761 communities.	15
Figure S3. Population densities in the 761 communities.	16
Figure S4. Human development indexes in the 761 communities.	
Figure S5. Infant mortality rates in the 761 communities.	
Figure S6. Relative risks of mortality associated with exposure to floods during lag 0-60 communities. The lag-response association is modeled using a natural cubic B-splir degrees of freedom through a crossbasis function) days in 761 ne with four 19
Reference	22

1 1. Methods

2 1.1 Mortality data

3 The MCC Network collected and updated daily time-series data on death counts from 4 relevant authorities of multiple countries/territories globally. The details had been provided in 5 previous publications [1,2]. The most updated MCC database had all-cause mortality data (if not available, represented by non-external causes [ICD-9th Revision codes 0–799 or ICD-10 codes A0– 6 7 R99] mortality) of 792 communities from 44 countries/territories; cardiovascular mortality data of 8 631 communities from 29 countries/territories; respiratory mortality data of 639 communities from 9 28 countries/territories. The COD URF registered the date, cause, and Statistical Area Level 3 (SA3) 10 for residence of all death in Australia, which was aggregated as daily death counts of SA3s. Since 11 some SA3s were sparsely populated, only SA3s in metropolitan areas (e.g., the Great Sydney) were 12 considered. Consequently, mortality data from 171 (out of 345) SA3s in seven states (i.e., New South 13 Wales, Victoria, Queensland, South Australia, Western Australia, Tasmania, and Northern Territory) 14 during 2006-2017 were included, and the mortality data of the three cities of Australia from the MCC 15 database were excluded because of duplications. The New Zealand integrated data infrastructure 16 (IDI) provided the date, cause, and territorial authority (TA) for residence of all death in New 17 Zealand. All deaths during 2001-2018 in all (N=67) TAs of New Zealand were included. The 18 International Network for the Demographic Evaluation of Populations and their Health (INDEPTH) 19 Network database provides all-cause mortality counts data in 2000-2016, which were retrieved from 20 32 health and demographic surveillance systems (HDSS) sites in Africa and Asia that were not 21 overlapped with the MCC database. The health data were representative of the whole population in 22 each HDSS site, and more information had been presented by previous publications [3,4]. The COD 23 URF, IDI, and INDEPTH datasets were collected because the MCC database only covered 52 locations 24 in one country in Sub-Saharan Africa and three cities (i.e., Sydney, Melbourne, and Brisbane) in 25 Australia and New Zealand.

26

2

27 1.2 Demographic, socioeconomic status, and population health variables

Demographic data of 2010 were obtained from the Gridded Population of the World (GPW, 28 29 version 4) dataset from the Socioeconomic Data And Applications Center (SEDAC), which were estimates of population counts in a spatial resolution of 1km and were consistent with national 30 censuses and population registers [5]. Based on the gridded population data and community 31 32 boundaries, numbers of older population (i.e., aged 65 years and older) and total population in 2010 were estimated for each community. For each community, proportion of older population was 33 34 calculated by dividing the number of older population by the total population, and the population 35 density was defined as number of population per square kilometer. 36 Global data of human development index (HDI) attempted to quantify human well-being on 37 a subnational level (e.g., states and provinces) through a combination of three dimensions: 38 education, health and standard of living [6]. HDI data in 2010 were obtained from the Global Data 39 Lab. The index ranged from 1 to 100, and a higher HDI indicates a higher level of well-being. The HDI 40 of each community was defined as the HDI of the subnational area where the community located. 41 Infant mortality rate (IMR) had been regarded as an indicator of population health status [7]. 42 Global estimates of subnational IMR were obtained from the SEDAC. Considering only estimates of 43 2000 and 2015 were available, and the study periods were generally 2000-2019 across communities, 44 we chose the estimates of 2015. IMR were stored in a gridded format with a spatial resolution of 45 1km. The IMR for each community in 2015 was estimated by using the gridded IMR data and the 46 gridded population counts data in 2015, which was also obtained from the SEDAC [5]. 47

48 1.3 Community-specific model

49 Community-specific flood-mortality associations were examined using a time-series Poisson 50 regression as shown:

51
$$\log(D_{ij}) = cb(Flood_{ij}) + bs(t_j) + bs(doy_j) + dow_j + cb(Temp_{ij})$$

Where D_{ij} is the death count in community *i* on day *j*; $Flood_{ij}$ is the binary flood exposure 52

3

53 indicator, of which the lag-response association is modeled using a natural cubic B spline with three 54 degrees of freedom through a crossbasis function (three degrees of freedom were selected to allow 55 for a nonlinear association while maximizing the statistical power); t_i is a cubic B spline with three 56 degrees of freedom for the date on day j to model long term trends; doy_i is a cyclic cubic B spline with three equally spaced knots for day of the year on day j; dow_i is a categorical variable for day of 57 58 week on day *j*; and *Temp*_{*i*} is a crossbasis function of daily mean temperature over 0-21 lag days in community *i* on day *j*, of which the exposure-response association is modeled with a quadratic B 59 60 spline with three internal knots placed at the 10th, 75th, and 90th percentiles, and the lag-response association is modeled using a natural cubic B spline with an intercept and three internal knots 61 62 placed at equally spaced values in the log scale [1].

63

64 **1.4 Sensitivity analyses**

65 We undertook sensitivity analyses to examine the robustness of our results. Namely, assuming different maximum lag periods (30, 40, 50, 90, or 120 days) for the impact of floods on 66 67 mortality; modeling the lag-response associations of flood exposure using a natural cubic B spline 68 with different degrees of freedom (DF = 2 or 4); modeling the exposure-response association of 69 temperature with different a spline (i.e., natural cubic B spline), places of knots (i.e., equally spaced), 70 and numbers of knots (i.e., 2 and 4 equally spaced knots); and modeling the lag-response association 71 of temperature with different a spline (i.e., cubic B spline), numbers of knots (i.e., 2 and 4 internal 72 knots placed at equally spaced values in the log scale), and maximum lag periods (i.e., 14 and 28 days). The effect estimates from the sensitivity analysis models were compared with the effect 73 74 estimates produced by our primary models, using fixed effect meta-regressions with no statistical 75 adjustment [8].

76

77 1.5 Calculation of attributable fraction

78

First, the number of annual deaths attributable to flood exposure was calculated for each

4

community using the country/territory-level lag-response estimates [9]. Then, the total number of
annual attributable deaths was divided by the total number of annual deaths to derive the
attributable fraction (AF) for each country/territory. The calculation (of country/territory-specific
AFs) was performed using the following formulas:

83
$$b_{-}AF_{j} = 1 - \exp(-\sum_{l=0}^{L} \beta_{j-l})$$

$$AN_j = n_j * b_A F_j$$

$$AF = \frac{\sum^{AN_i} / d_i}{\sum^{n_i} / d_i}$$

Where: $b_A F_j$ is the attributable fraction of mortality due to the flood exposure on day j, with 86 backward approach; *j* is the day when deaths occur; *l* is the lag time; L is the maximum lag time; 87 β_{j-l} is the effect estimates associated with flood exposure on day j - l; AN_j is the number of deaths 88 attributable to flood exposure on day j; n_i is the registered number of deaths on day j; AN_i is the 89 90 attributable deaths to flood exposure in community i during the study period; n_i is the deaths in community *i* during the study period; d_i is the study period (years) of community *i*; $\sum_{i=1}^{i} AN_i / d_i$ is 91 the total number of annual attributable deaths in the country/territory; $\sum_{i=1}^{n_i} n_i / n_i$ is the total number 92 93 of annual deaths [9].

	Income class ^a	Number of communities	Study period	Number of flood events ^b	Flooded days per year ^c	All cause deaths ^d	Cardiovascular deaths	Respiratory deaths
Northern Americ	а							
Canada	Н	10	2000-2015	14	0.9 (0.5)	750583	236419	64576
USA	Н	148	2000-2006	70	3.8 (4.7)	5911528	1796072	582445
Latin America an Caribbean	d the							
Argentina	UM	3	2005-2015	4	1.6 (1.9)	686333	NA	NA
Brazil	UM	21	2000-2018	51	4.2 (4.8)	3819621	1026449	394535
Chile	UM	4	2004-2014	2	1.3 (0.5)	325462	NA	NA
Colombia	UM	5	2000-2013	16	12.4 (0.9)	843633	237346	88819
Mexico	UM	6	2000-2014	9	1.8 (2.1)	1920315	643690	236568
Peru	UM	16	2008-2014	11	11.2 (15.3)	604595	NA	NA
Eastern Asia								
Japan	Н	43	2000-2015	18	1.0 (0.7)	7170326	2047878	1080097
Mainland	UM	10	2001-2015	21	16.7 (16.0)	731525	304313	100880
China South Korea	н	34	2000-2018	23	1.1 (1.0)	2647364	602332	199368
Taiwan	UM	3	2001-2014	14	3.4 (1.2)	907141	199305	93464
South East Asia								
Philippines	LM	12	2006-2019	19	7.6 (1.1)	796933	288555	116027
Thailand	UM	62	2000-2008	40	36.5 (28.8)	1666292	299721	205900
Australia and Ne	w Zealand							
Australia	н	94	2009-2017	15	3.4 (7.4)	401584	119454	36007
New Zealand	н	55	2000-2018	32	0.7 (0.8)	523282	183559	45343
Eastern Europe								
Czech Republic	н	4	2000-2015	10	5.7 (0.7)	505932	246331	29860
Moldova	LM	2	2003-2010	3	2.4 (0.0)	2262	NA	NA
Romania	UM	8	2000-2016	23	4.8 (2.6)	697505	NA	NA
Northern Europe								
Ireland	н	1	2000-2007	1	1.7 (0.0)	80436	21288	11905
UK	н	66	2000-2016	22	6.6 (4.6)	3542588	1149607	514056
Southern Europe								
Italy	н	10	2006-2015	7	1.2 (0.8)	579943	NA	NA
Portugal	н	6	2000-2018	2	1.0 (0.0)	967490	303179	107939
Spain	н	45	2000-2014	21	0.9 (0.7)	1529149	496468	184407
Western Europe								
France	н	19	2000-2015	17	0.5 (0.4)	1734312	NA	106092
Germany	н	10	2000-2015	11	0.8 (2.9)	1819821	NA	NA
Netherland	н	5	2000-2016	2	0.5 (0.2)	338448	NA	NA
Switzerland	н	7	2000-2013	7	1.1 (1.5)	154576	56968	9731
Sub-Saharan Afri	са							
Burkina Faso	L	3	2000-2015	6	5.8 (6.4)	16248	NA	NA
Ethiopia	L	1	2006-2015	2	12.7 (0.0)	3929	NA	NA
Ghana	LM	3	2000-2014	9	13.5 (8.0)	26586	NA	NA
Kenya	L	2	2003-2015	9	13.0 (10.3)	10859	NA	NA
Senegal	LM	3	2000-2016	4	6.1 (0.8)	9245	NA	NA

2. Results

Table S1. Descriptive statistics of the 761 communities by country/territory

South Africa	UM	38	2000-2016	27	3.0 (3.8)	5840325	855882	680276
Tanzania	L	2	2000-2014	9	13.0 (7.0)	15304	NA	NA

^aIncome class: low (L), lower-middle (LM), upper-middle (UM), high (H).

^bNumber of flood events that impacted the included communities during the study period. ^cMedian (IQR) of flood days per year across the included communities during the study period. ^dAll cause mortality data were not available, and only non-external mortality data were collected for the 142 communities from Spain (N = 45), Thailand (62), Mainland China (10), Brazil (21), Argentina (3), and Ireland (1). Abbreviations: IQR = interquartile range; USA = the United States of America; UK = the United Kingdom.

			Cardiovascular		Respiratory		
	mortality		mort	ality	mortality		
Variable	1 ²	<i>p</i> -value	²	<i>p</i> -value	²	<i>p</i> -value	
Global	45%	<.001	23%	, <.001	36%	, <.001	
Northern America	32%	<.001	9%	0.078	33%	<.001	
Canada	50%	0.001	34%	0.041	34%	0.044	
USA	30%	<.001	5%	0.2	32%	<.001	
Latin America and the	46%	<.001	46%	<.001	59%	<.001	
Caribbean							
Argentina	33%	0.176	NA	NA	NA	NA	
Brazil	20%	0.094	43%	0.001	25%	0.07	
Chile	0%	0.955	NA	NA	NA	NA	
Colombia	80%	<.001	51%	0.019	61%	0.002	
Mexico	0%	0.934	24%	0.222	51%	0.032	
Peru	38%	0.007	NA	NA	NA	NA	
Eastern Asia	40%	<.001	28%	<.001	40%	<.001	
Japan	14%	0.095	22%	0.016	33%	<.001	
Mainland China	78%	<.001	70%	<.001	72%	<.001	
South Korea	25%	0.014	6%	0.31	0%	0.777	
Taiwan	65%	0.01	0%	0.632	69%	0.004	
South East Asia	62%	<.001	43%	<.001	42%	<.001	
Philippines	34%	0.029	2%	0.432	60%	<.001	
Thailand	63%	<.001	44%	<.001	25%	0.002	
Australia and New Zealand	41%	<.001	13%	0.014	11%	0.032	
Australia	54%	<.001	25%	<.001	4%	0.293	
New Zealand	0%	0.753	0%	0.917	19%	0.026	
Eastern Europe	13%	0.246	0%	0.464	36%	0.123	
Czech Republic	0%	0.611	0%	0.464	36%	0.123	
Moldova	0%	0.465	NA	NA	NA	NA	
Romania	29%	0.101	NA	NA	NA	NA	
Northern Europe	21%	0.006	19%	0.012	11%	0.106	
Ireland	NA	NA	NA	NA	NA	NA	
UK	21%	0.006	19%	0.013	12%	0.086	
Southern Europe	37%	<.001	0%	0.626	31%	<.001	
Italy	67%	<.001	NA	NA	NA	NA	
Portugal	0%	0.46	5%	0.4	0%	0.72	
Spain	18%	0.043	0%	0.947	24%	0.008	
Western Europe	41%	<.001	3%	0.421	18%	0.114	
France	36%	0.005	NA	NA	29%	0.038	
Germany	55%	<.001	NA	NA	NA	NA	
Netherland	40%	0.069	NA	NA	NA	NA	
Switzerland	28%	0.129	3%	0.421	0%	0.912	
Sub-Saharan Africa	61%	<.001	27%	0.011	43%	<.001	
Burkina Faso	0%	0.992	NA	NA	NA	NA	
Ethiopia	NA	NA	NA	NA	NA	NA	
Ghana	0%	1	NA	NA	NA	NA	
Kenya	0%	0.947	NA	NA	NA	NA	

Senegal	0%	0.451	NA	NA	NA	NA
South Africa	71%	<.001	27%	0.011	43%	<.001
Tanzania	0%	0.931	NA	NA	NA	NA
Climate						
Tropical	56%	<.001	45%	<.001	43%	<.001
Arid	30%	0.006	11%	0.256	44%	0.001
Temperate	44%	<.001	15%	<.001	35%	<.001
Continental	31%	<.001	23%	0.003	27%	<.001
Polar	0%	0.425	NA	NA	NA	NA
Income						
High	36%	<.001	12%	<.001	28%	<.001
Upper-middle	64%	<.001	48%	<.001	51%	<.001
Lower-middle	8%	0.294	2%	0.432	60%	<.001
Low	0%	0.996	NA	NA	NA	NA
Human development index						
Q4: >20.1	60%	<.001	46%	<.001	55%	<.001
Q3: 5.9-20.1	37%	<.001	6%	0.174	29%	<.001
Q2: 1.0-5.9	24%	<.001	13%	0.013	36%	<.001
Q1: <1.0	44%	<.001	15%	0.005	15%	0.004
Infant mortality rates (%)						
Q1: <0.8	25%	<.001	5%	0.213	29%	<.001
Q2: 0.8-2.8	48%	<.001	20%	<.001	27%	<.001
Q3: 2.8-6.7	32%	<.001	13%	0.011	38%	<.001
Q4: >6.7	59%	<.001	43%	<.001	48%	<.001
Proportion of older						
population (%)						
Q1: <9	59%	<.001	36%	<.001	45%	<.001
Q2: 9-13	49%	<.001	31%	<.001	36%	<.001
Q3: 13-16	26%	<.001	11%	0.029	27%	<.001
Q4: >16	31%	<.001	6%	0.152	33%	<.001
Population density (per km ²)						
Q1: <152	39%	<.001	6%	0.171	26%	<.001
Q2: 152-526	40%	<.001	26%	<.001	11%	0.021
Q3: 526-2010	47%	<.001	19%	<.001	44%	<.001
Q4: >2010	51%	<.001	31%	<.001	53%	<.001

Note: P values were estimated through Cochran's Q tests. Abbreviations: USA = the United States of America; UK = the United Kingdom. Human development index, infant mortality rates, proportion of older population, and population density were categorized by their quartiles among the 761 community. Abbreviations: Q = quartile.

	All cause mortality		Cardiovascular	Cardiovascular mortality		Respiratory mortality	
Model	Cumulative RR	P value for difference	Cumulative RR	P value for difference	Cumulative RR	P value for difference	
Primary	1.021 (1.006 to 1.036)	Ref	1.021 (0.999 to 1.043)	Ref	1.049 (1.008 to 1.092)	Ref	
Maximum							
lag period							
30	1.017 (1.007	0.652	1.024 (1.008	0.788	1.049 (1.021	0.978	
	to 1.027)		to 1.041)		to 1.078)		
40	1.021 (1.009	0.998	1.026 (1.008	0.700	1.054 (1.022	0.871	
	to 1.033)		to 1.045)		to 1.087)		
50	1.023 (1.009	0.861	1.026 (1.005	0.737	1.061 (1.024	0.696	
	to 1.036)		to 1.047)		to 1.100)		
90	1.024 (1.004	0.797	1.018 (0.993	0.896	1.038 (0.990	0.713	
	to 1.044)		to 1.044)		to 1.088)		
120	1.028 (1.004	0.616	1.007 (0.979	0.471	1.049 (0.993	0.980	
	to 1.052)		to 1.036)		to 1.108)		
Degrees							
of							
freedom							
2	1.020 (1.006	0.967	1.018 (0.997	0.878	1.041 (1.002	0.776	
	to 1.035)		to 1.040)		to 1.082)		
4	1.022 (1.007	0.910	1.025 (1.003	0.792	1.062 (1.021	0.671	
	to 1.037)		to 1.047)		to 1.106)		

Table S3. Results of sensitivity analyses by changing maximum lag days and degrees of freedom of the lag-response associations of flood exposure

Note: P values for difference were estimated by fixed effect meta-regression with no statistical adjustment because these models were based on the same population. In the primary model, the maximum lag period was 60 days, and the degrees of freedom of lag-response association was 3.

Table S4. Results of sensitivity analyses by changing the lag-exposure-response associations of temperature						
	All cause mort	ality	Cardiovascula	r mortality	Respiratory m	ortality
Model	Cumulative	P value for	Cumulative	P value for	Cumulative	P value for
	RR	difference	RR	difference	RR	difference
Primary	1.021 (1.006	Ref	1.021 (0.999	Ref	1.049 (1.008	Ref
	to 1.036)		to 1.043)		to 1.092)	
Exposure-						
response						
association						
Natural	1.020 (1.005	0.914	1.020 (0.998	0.961	1.047 (1.007	0.942
cubic B-	to 1.035)		to 1.042)		to 1.089)	
spline						
Equally	1.021 (1.006	1.000	1.021 (0.999	0.965	1.047 (1.007	0.941
spaced 3	to 1.036)		to 1.044)		to 1.089)	
knots		0.04.0				
Equally	1.020 (1.005	0.916	1.021 (0.999	0.988	1.047 (1.007	0.941
spaced 2	to 1.035)		to 1.043)		to 1.090)	
knots	4 000 /4 005	0.050	4 000 /4 000	0.004	4.046 (4.005	0.000
Equally	1.020 (1.005	0.959	1.022 (1.000	0.934	1.046 (1.005	0.902
spaced 4	to 1.035)		to 1.045)		to 1.088)	
KNOTS						
Lag-response						
Cubic b	1 021 /1 006	0.002	1 021 (0 000	0.000	1 040 (1 000	0.009
cubic b-	1.021 (1.000 to 1.026)	0.995	1.021 (0.999 to 1.042)	0.990	1.049 (1.009 to 1.002)	0.998
Spille Number of	1 021 (1 006	0 000	1 021 (0 000	0.000	1 040 (1 009	0.094
knots is 2	1.021 (1.000 to 1.026)	0.988	1.021(0.999)	0.999	1.049 (1.008	0.984
Number of	1 021 (1 006	0 998	1 021 (0 999	0 998	1 050 (1 009	0 995
knots is A	to 1 036)	0.558	to 1 043)	0.558	to 1 092)	0.555
KH013 13 4	10 1.030)		(0 1.045)		(0 1.052)	
Maximum	1.021 (1.006	0.997	1.021 (0.999	0.998	1.050 (1.009	0.999
lag period is	to 1.036)		to 1.043)		to 1.092)	
14 days						
Maximum	1.021 (1.006	0.998	1.021 (0.999	0.999	1.049 (1.009	0.999
lag period is	to 1.036)		to 1.043)		to 1.092)	
28 days						

Note: P values for difference were estimated by fixed effect meta-regression with no statistical adjustment because these models were based on the same population. In the primary model, the lag-exposure-response association of temperature was modelled by using a cross basis function of daily mean temperature with a maximum lag period of 21 days, of which the exposure-response association was modelled with a quadratic B spline with three internal knots placed at the 10th, 75th, and 90th percentiles, and the lag-response association was modelled using a natural cubic B spline with an intercept and three internal knots placed at equally spaced values in the log scale.

Table S5. Annual flood-attributable deaths in communities im	pacted by floo	ds, by country	//territory
--	----------------	----------------	-------------

Variable	All cause	Cardiovascular	Respiratory
	mortality	mortality	mortality
Northern America			
Canada	23 (-10 to 55)	18 (2 to 33)	6 (-2 to 14)
USA	268 (1 to 530)	132 (44 to 219)	93 (19 to 165)
Latin America and the			
Caribbean			
Argentina	45 (12 to 76)	NA	NA
Brazil	104 (31 to 174)	96 (24 to 172)	70 (33 to 108)
Chile	1 (-34 to 36)	NA	NA
Colombia	-69 (-281 to 119)	14 (-28 to 54)	-28 (-84 to 20)
Mexico	126 (30 to 221)	-106 (-310 to 68)	-119 (-402 to 60)
Peru	9 (-86 to 98)	NA	NA
Eastern Asia			
Japan	78 (-61 to 217)	-2 (-68 to 63)	25 (-48 to 96)
Mainland China	416 (-114, 899)	211 (-155, 524)	136 (-93, 315)
South Korea	61 (11 to 110)	-5 (-31 to 18)	9 (-1 to 18)
Taiwan	46 (-10, 98)	4 (-12, 20)	13 (-23, 44)
South East Asia			
Philippines	-26 (-114 to 63)	27 (-12 to 65)	-56 (-111 to -7)
Thailand	-195 (-567 to 163)	-179 (-302 to -61)	-10 (-80 to 58)
Australia and New Zealand	. ,	. ,	. ,
Australia	16 (-78 to 105)	19 (-13 to 49)	17 (5 to 27)
New Zealand	7 (-5 to 18)	4 (-3 to 10)	8 (4 to 11)
Eastern Europe			
Czech Republic	8 (-19 to 34)	-8 (-32 to 14)	11 (0 to 21)
Moldova	0 (-3 to 2)	NA	NA
Romania	20 (0 to 38)	NA	NA
Northern Europe	. ,		
Ireland	8 (-85 to 76)	5 (-23 to 23)	-3 (-21 to 10)
UK	-133 (-191 to -74)	9 (-26 to 44)	-83 (-114 to -53)
Southern Europe	. ,	. ,	. ,
Italy	-94 (-202 to 5)	NA	NA
Portugal	-15 (-36 to 4)	-15 (-28 to -3)	13 (9 to 17)
Spain	-19 (-64 to 25)	4 (-20 to 27)	-3 (-23 to 14)
Western Europe	· · · ·	Ϋ́Υ,	, , , , , , , , , , , , , , , , , , ,
France	0 (-45 to 44)	NA	3 (-5 to 11)
Germany	56 (4 to 108)	NA	NA
Netherland	-3 (-21 to 13)	NA	NA
Switzerland	-13 (-35 to 6)	-4 (-10 to 2)	-2 (-5 to 0)
Sub-Saharan Africa	· · ·	ζ <i>γ</i>	Υ Υ
Burkina Faso	7 (-8 to 18)	NA	NA
Ethiopia	3 (-40 to 15)	NA	NA
Ghana	2 (-22 to 21)	NA	NA
Kenya	10 (0 to 19)	NA	NA
Senegal	-2 (-24 to 7)	NA	NA
South Africa	267 (-151 to 651)	9 (-16 to 34)	25 (-13 to 60)
	(00 00 1)	- (

Tanzania5 (-6 to 13)NANANote: The attributable numbers of death were calculated using pooled country/territory level riskestimates. Abbreviations: USA = the United States of America; UK = the United Kingdom.

Figure S1. Köppen climate classifications in the 761 communities.

Figure S2. Proportions of older population in the 761 communities.

Figure S3. Population densities in the 761 communities.

Figure S4. Human development indexes in the 761 communities.

Figure S5. Infant mortality rates in the 761 communities.

Figure S6. Relative risks of mortality associated with exposure to floods during lag 0-60 days in 761 communities. The lag-response association is modeled using a natural cubic B-spline with four degrees of freedom through a crossbasis function

MCC Collaborative Research Network

Rosana Abrutzky¹, Micheline de Sousa Zanotti Stagliorio Coelho Coelho², Paulo Hilario Nascimento Saldiva³, Nicolás Valdés Ortega⁴, Patricia Matus Correa⁴, Haidong Kan⁵, Samuel Osorio⁶, Aleš Urban^{7,8}, Francesco Sera⁹, Mathilde Pascal¹⁰, Alexandra Schneider¹¹, Veronika Huber^{12,13}, Ariana Zeka¹⁴, Patrick Goodman¹⁵, Francesca de'Donato¹⁶, Paola Michelozzi¹⁶, Masahiro Hashizume¹⁷, Yoonhee Kim¹⁸, César De la Cruz Valencia¹⁹, Magali Hurtado Diaz¹⁹, Ala Overcenco²⁰, Caroline Ameling²¹, Danny Houthuijs²¹, Gabriel Carrasco-Escobar^{22,23}, Xerxes Seposo²⁴, Baltazar Nunes^{25,26}, Iulian-Horia Holobaca²⁷, Ana Maria Vicedo-Cabrera^{28,29,30}, Aurelio Tobias^{31,24}, Jouni J. K. Jaakkola^{32,33}, Yasushi Honda³⁴, Fiorella Acquaotta³⁵, Noah Scovronick³⁶, Ho Kim³⁷, Whanhee Lee^{38,39}, Carmen Íñiguez^{40,41}, Martina S. Ragettli^{42,43}, Shih-Chun Pan⁴⁴, Yue Leon Guo^{45,44,46}, Antonella Zanobetti⁴⁷, Joel Schwartz⁴⁷, Simon Hales⁴⁸

¹Universidad de Buenos Aires, Facultad de Ciencias Sociales, Instituto de Investigaciones Gino Germani, ²Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil, ³INSPER, São Paulo, Brazil, ⁴Department of Public Health, Universidad de los Andes, Santiago, Chile, ⁵Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China, ⁶Department of Environmental Health, University of São Paulo, São Paulo, Brazil, ⁷Institute of Atmospheric Physics, Czech Academy of Sciences, Prague 141 00, Czech Republic, ⁸Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic, ⁹Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy, ¹⁰Santé Publique France, Department of Environmental and Occupational Health, French National Public Health Agency, Saint Maurice 94 410, France, ¹¹Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany, ¹²IBE-Chair of Epidemiology, LMU Munich, Munich, Germany, ¹³Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain, ¹⁴Institute for the Environment, Brunel University London, London, UK, ¹⁵Technological University Dublin, Ireland, ¹⁶Department of Epidemiology, Lazio Regional Health Service, Rome, Italy, ¹⁷Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan, ¹⁸Department of Global Environmental Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan, ¹⁹Department of Environmental Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico, ²⁰National Agency for Public Health of the Ministry of Health, Labour and Social Protection of the Republic of Moldova, ²¹National Institute for Public Health and the Environment (RIVM), Centre for Sustainability and Environmental Health, Bilthoven, Netherlands, ²²Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru, ²³Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA, ²⁴School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan, ²⁵Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, ²⁶Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisboa, Portugal, ²⁷Faculty of Geography, Babes-Bolay University, Cluj-Napoca, Romania, ²⁸Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland, ²⁹Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland, ³⁰Department of Public Health Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom, ³¹Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain, ³²Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland, ³³Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland, ³⁴Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan, ³⁵Department of Earth Sciences, University of Torino, Italy, ³⁶Gangarosa Department of Environmental Health. Rollins School of Public Health, Emory University, Atlanta, USA, ³⁷Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea,

³⁸School of the Environment, Yale University, New Haven CT, USA, ³⁹Department of Occupational and Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea, ⁴⁰Department of Statistics and Computational Research. Universitat de València, València, Spain, ⁴¹Ciberesp, Madrid. Spain, ⁴²Swiss Tropical and Public Health Institute, Basel, Switzerland, ⁴³University of Basel, Basel, ⁴⁴National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan, ⁴⁵Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan, ⁴⁶Graduate Institute of Environmental and Occupational Health Sciences, NTU College of Public Health, Taipei, Taiwan, ⁴⁷Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, ⁴⁸Department of Public Health, University of Otago, Wellington, New Zealand

Reference

- 1 Gasparrini A, Guo Y, Hashizume M, *et al.* Mortality risk attributable to high and low ambient temperature: a multicountry observational study. *The Lancet* 2015;**386**:369–75. doi:10.1016/S0140-6736(14)62114-0
- 2 Zhao Q, Guo Y, Ye T, *et al.* Global, regional, and national burden of mortality associated with nonoptimal ambient temperatures from 2000 to 2019: a three-stage modelling study. *The Lancet Planetary Health* 2021;**5**:e415–25. doi:10.1016/S2542-5196(21)00081-4
- 3 Herbst K, Juvekar S, Bhattacharjee T, *et al.* The INDEPTH Data Repository: An International Resource for Longitudinal Population and Health Data From Health and Demographic Surveillance Systems. *J Empir Res Hum Res Ethics* 2015;**10**:324–33. doi:10.1177/1556264615594600
- 4 Sankoh O, Byass P. The INDEPTH Network: filling vital gaps in global epidemiology. *International Journal of Epidemiology* 2012;**41**:579–88. doi:10.1093/ije/dys081
- 5 Center For International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11. 2018. doi:10.7927/H46M34XX
- 6 Smits J, Permanyer I. The Subnational Human Development Database. *Sci Data* 2019;**6**:190038. doi:10.1038/sdata.2019.38
- 7 Schell CO, Reilly M, Rosling H, et al. Socioeconomic determinants of infant mortality: a worldwide study of 152 low-, middle-, and high-income countries. Scand J Public Health 2007;35:288–97. doi:10.1080/14034940600979171
- 8 Borenstein M, Hedges LV, Higgins JPT, *et al.* A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010;**1**:97–111. doi:10.1002/jrsm.12
- 9 Gasparrini A, Leone M. Attributable risk from distributed lag models. *BMC Med Res Methodol* 2014;**14**:55. doi:10.1186/1471-2288-14-55