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A. Data 

A.1. City selection 

The initial list of cities was taken from the Urban Audit dataset from Eurostat,1 that contains 870 cities. From 

this list, we discarded 16 overseas cities that were far and with a very different climate from the main continent 

(Supplementary Table S1). The description of the final sample of 854 cities is provided in Table 1 of the main 

manuscript. 

Table S1: List of overseas cities in the Urban Audit dataset discarded from the analysis. 

Country City 

France Saint Denis, Fort-de-France, Mamoudzou, Cayenne, Saint-Louis 

Iceland Reykjavik 
Portugal Funchal, Ponta Delgada 

Spain 
Las Palmas, Sante Cruz de Tenerife, Telde, Ceuta, Melilla, 

Arrecife, Santa Lucía de Tirajana, Puerto de la Cruz 
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A.2. Description of the MCC dataset 

We linked the 854 selected cities to locations of the Multi-Country Multi-City (MCC) dataset. To perform the 

linkage, we looked at the intersection between the city polygons from Eurostat and a buffer of 10 km around the 

MCC point locations. When there were several matches, we selected the larger intersection. Eventually, a 

manual check was performed to correct mismatches. A display of the 232 cities with MCC counterparts is 

shown in Supplementary Figure S1, a summary of the MCC dataset is given in Supplementary Table S2 and a 

description of country-specific mortality datasets is given below. Analysis on the MCC data was restricted to 

years 1990 to 2019 to avoid the COVID-19 years. 

Cyprus 

Daily mortality is represented by counts of all-cause deaths collected by the Health Monitoring Unit of the 

Ministry of Health of Cyprus. The ideas and opinions expressed herein are those of the author. Endorsement of 

these ideas and opinions by the Ministry of Health of Cyprus is not intended nor should it be inferred. 

Czechia 

Daily mortality is represented by counts of all-cause deaths obtained from the Czech Statistical Office and the 

Institute of Health Information and Statistics. 

Estonia 

Daily mortality is represented by counts of deaths for non-external causes (ICD-9: 0-799; ICD10: A00-R99) 

obtained from Estonian Causes of Death Registry. 

Finland 

Data were collected from the Helsinki Metropolitan Area between 1st of January 1994 and 31st of December 

2014. Daily number of deaths were obtained from Statistics Finland and are represented by counts of deaths for 

nonexternal causes (ICD-9: 0-799; ICD-10: A00-R99). 

France 

Daily mortality is represented by counts of all-cause deaths provided by the French National Institute of Health 

and Medical Research (CepiDC). 

Germany 

Daily mortality, obtained from the Research Data Centres of the Federation and the Federal States of Germany 

(Forschungsdatenzentrum der Statistischen Ämter des Bundes und der Länder), is represented by counts of 

deaths for all causes. 

Greece 

Daily mortality is represented by counts of all-cause deaths provided by the Hellenic Statistical Authority. 

Ireland 

Daily mortality, provided by the Irish Central Statistics Office Northern and Ireland Social Research Agency, is 

represented by counts of deaths for non-external causes only (ICD-9: 0-799; ICD-10: A00-R99). 

Italy 

Daily mortality is represented by counts of all-cause deaths obtained from local mortality registries and from the 

rapid mortality surveillance system. 

Netherlands 

Daily mortality is represented by counts of all-cause deaths provided by Statistics Netherlands. 

Norway 

Daily mortality is represented by all-cause counts of deaths and is provided by the Norwegian Cause of Death 

registry. 

Portugal 



4 

 

Daily mortality, obtained from Statistics Portugal, is represented by counts of deaths for non-external causes 

only (ICD-9: 0-799; ICD-10: A00-R99). 

Romania 

Daily mortality, obtained from the National Institute for Statistics (NIS) in Romania, is represented by counts of 

deaths for all causes. The mortality dataset includes the decedents with the stable residence (permanent) or 

normal residence (defined as the place/city where a person lived mostly in the last 12 months of his/her life) in 

the seven Romanian cities. 

Spain 

Daily mortality, obtained from Spain National Institute of Statistics, is represented by counts of deaths for 

nonexternal causes (ICD-9: 0-799; ICD-10: A00-R99). 

Sweden 

Daily mortality is represented by counts of all-cause deaths obtained from the Swedish Cause of Death Register 

at the Swedish National Board of Health and Welfare. 

Switzerland 

Daily mortality, provided by the Federal Office of Statistics (Switzerland), is represented by counts of non-

external deaths other than accidents (ICD-10codes A00-R99, V01-V99, W00-X59). 

United Kingdom 

Daily mortality, gathered from Office for National Statistics, is represented by counts of deaths for all causes. 
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Table S2: Description of the linkage between the Urban Audit and the MCC datasets. 

Region Country 
Cities in 

Urban Audit 
Cities in MCC 

Total deaths 
in MCC cities 

Available age groups MCC data period 

Northern 

Denmark 4 0 (0%) - - - 

Estonia 3 3 (100%) 136,371 - 1997 - 2018 

Finland 9 1 (11%) 130,395 00-64; 65-99 1994 - 2011 

Ireland 5 1 (20%) 185,624 - 1990 - 2007 

Latvia 10 0 (0%) - - - 

Lithuania 6 0 (0%) - - - 

Norway 4 1 (25%) 135,159 00-74; 75-99 1990 - 2016 

Sweden 14 3 (21%) 760,527 
00-14; 15-64; 65-74;  

75-84; 85-99 
1990 - 2016 

United Kingdom 135 103 (76%) 6,494,919 00-44; 45-64; 65-74; 75-84; 85-99 1990 - 2019 

Western 

Austria 6 0 (0%) - - - 

Belgium 15 0 (0%) - - - 

France 72 18 (25%) 1,753,573 00-64; 65-99 2000 - 2015 

Germany 127 12 (9%) 3,105,865 - 1993 - 2015 

Luxembourg 1 0 (0%) - - - 

Netherlands 47 5 (11%) 453,395 - 1995 - 2016 

Switzerland 12 8 (67%) 243,638 
00-64; 65-74; 75-84;  

85-99 
1995 - 2013 

Eastern 

Bulgaria 18 0 (0%) - - - 

Czechia 18 3 (17%) 534,382 
00-29; 30-59; 60-74;  

75-99 
1994 - 2019 

Hungary 19 0 (0%) - - - 

Poland 68 0 (0%) - - - 

Romania 35 8 (23%) 951,146 - 1994 - 2016 

Slovakia 8 0 (0%) - - - 

Southern 

Croatia 7 0 (0%) - - - 

Cyprus 3 3 (100%) 67,217 
00-44; 45-64; 65-74;  

75-84; 85-99 
2004 - 2019 

Greece 14 1 (7%) 287,969 
00; 01-14; 15-64; 65-74; 75-84; 85-

99 
2001 - 2010 

Italy 87 16 (18%) 645,420 - 2001 - 2010 

Malta 1 0 (0%) - - - 

Portugal 14 2 (14%) 807,618 00-64; 65-99 1990 - 2012 

Slovenia 2 0 (0%) - - - 

Spain 90 44 (49%) 588,840 
00-04; 05-14; 15-44; 45-64; 65-74; 

75-99 
2009 - 2013 

 



6 

 

 

Figure S1: Map of the 854 Urban audit cities, including the subset of 232 MCC cities. 
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A.3. City-level characteristics 

This section provides details on the city-level characteristics. Supplementary Table S3 provides details on the 

variables used for impact measurement, while Supplementary Table S4 describes the variables used to derive 

the composite meta-predictors in the second-stage model through PLS (see Section B).  

Data sources were searched in the following nested order of geographical aggregation: Urban Audit that exactly 

matches the cities, NUTS3 level that is usually representative of cities, NUTS2 level that corresponds to larger 

regions and can be less representative of the smallest cities. Environmental variables that were unavailable in 

Eurostat or with too many missing values were extracted from various external datasets. In this case, we 

extracted all pixels within cities boundaries and averaged their series. 

Finally, since periods of availability differed widely according to variables, cities, and regions, for each city and 

each variable we averaged all available years between 2000 and 2020. The availability of each meta-variable is 

shown in Supplementary Figure S2. 

 

Table S3: List of other other city-level variables. 

Variable Source Description Age groups 

Death rate NUTS3 Death rate within age group 

00-04; 05-09; 10-14; 15-19; 20-24; 25-
29; 30-34; 35-39; 40-44; 45-49; 50-54; 
55-59; 60-64; 65-69; 70-74; 75-79; 80-
84; 85-99; Total 

Life expectancy  NUTS2 Life expectancy at age 
Birth; 5; 10; 15; 20; 25; 30; 35; 40; 45; 
50; 55; 60; 65; 70; 75; 80; 85 

Population structure NUTS3 
Proportion of the 
population in age group 

00-04; 05-09; 10-14; 15-19; 20-24; 25-
29; 30-34; 35-39; 40-44; 45-49; 50-54; 
55-59; 60-64; 65-69; 70-74; 75-79; 80-
84; 85-99 
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Table S4: List of city-level meta-predictors. 

Variable Source Description 

Total population 
Urban Audit / 
Wikipedia 

Note: population data were missing for several cities and were added from 

the Wikipedia pages for each city (Latvia: Valmiera; Belgium: Mechelen, 

Mouscron, La Louvière, Verviers) 

Population above 65 Urban Audit / NUTS3 Percentage 

Population density 
Urban Audit / 

Wikipedia 

Note: population density data were missing for several cities and were added 

from the Wikipedia pages for each city (Latvia: Valmiera; Belgium: 

Mechelen, Mouscron, La Louvière, Verviers; Ireland: Dublin, Limerick, 
Waterford; Norway: Bergen, Trondheim; UK: Glasgow, North Lanarkshire, 

Dundee) 

Life expectancy NUTS2 At birth 

Isolation Urban Audit / NUTS2 Proportion of single-person households 

GDP 
NUTS3 / Office of 

National Statistics 

GDP per capita. 
Note: GDP data for UK cities were unavailable in Eurostat and extracted 

from ONS 

Unemployment rate NUTS2 Among active population (20-64 years old) for all education levels 

Education level NUTS2 
Proportion of active population (25-64 years old) with ISCED level >= 5 
(higher education) 

Deprivation rate NUTS2 Proportion of population under severe material deprivation condition 

Hospital bed rates NUTS2 Number of hospital beds / inhabitants 

Imperviousness 
Copernicus High 
Resolution Layer 

Percentage of soil sealing 

Tree Cover Density 
Copernicus High 

Resolution Layer 
Level of Tree Cover Density (%) 

Grassland 
Copernicus High 
Resolution Layer 

Proportion of grassland pixels 

Water & Wetness 
Copernicus High 

Resolution Layer 

Average class between (1) permanent water, (2) temporary water, (3) 

permanent wetness and (4) temporary wetness 

Small Woody Features 
Copernicus High 
Resolution Layer 

Small woody features density (%) 

Elevation AWS Terrain Tiles Elevation at city centre 

Coastal region type Natural Earth Lowest distance between coastal line and city centre 

NDVI 
Google Earth Engine - 
MODIS 

 

PM25 

Atmospheric 

Composition Analysis 

Group 

https://sites.wustl.edu/acag/datasets/surface-pm2-5/ 

NO2 

Atmospheric 

Composition Analysis 

Group 

https://sites.wustl.edu/acag/datasets/surface-no2/ 

Temperature range Copernicus Anuual temperature range 

Mean temperature Copernicus Mean annual temperature 
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Figure S2: Proportion of cities with available values for each year and each meta-variable. 
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B. Modelling details 

We adopted a three-stage analysis design: i) city and age-group specific estimation of the overall cumulative 

exposure-response functions (ERF) in MCC cities, ii) creation of a predictive model by meta-regressing the 

first-stage ERF coefficients on age and the PLS components computed from 22 meta-predictors, and iii) 

prediction of risks to the whole list of cities using the second-stage model and health impact assessment. The 

steps of the analysis are illustrated in Figure S3. 

In the first stage, we estimated age group-specific ERF through a quasi-Poisson time series model for each of 

the 232 MCC cities. We applied a distributed lag nonlinear model (DLNM)2 with standard parameterization.3 In 

the temperature dimension, we specified a quadratic B-spline with knots positioned at the 10th, 75th and 90th 

percentile of the city-specific temperature distribution, and in the lag dimension a cubic natural spline with three 

knots positioned at equally-spaced log-values using a lag period of 21 days. Knots are positioned at percentiles 

to allow differences in risk that account for adaptation to the local climate. We also included indicators for the 

day of the week and a natural spline of time with seven degrees of freedom per year to control for time-varying 

confounding. Once the model was fit, we extracted the vector of five coefficients �̂�𝑖𝑗 representing the overall 

cumulative exposure response function for age group 𝑗 of city 𝑖.4 

In the second stage, we pooled the age-specific reduced first stage coefficients in a mulitvariate multilevel meta-

regression5 model as follows: 

 �̂�𝑖𝑗 = 𝜸𝑟(𝑖) + 𝑛𝑠(𝑎𝑖𝑗) + 𝑿𝑖𝜷 + 𝒃𝑖 + 𝜺𝑖𝑗 (1) 

where 𝜸𝑟(𝑖) is a term representing the region of city 𝑖, 𝑛𝑠(𝑎𝑖𝑗) is a natural spline of the age 𝑎𝑖𝑗  associated to �̂�𝑖𝑗 , 

𝑿𝑖  is a set of ten city-specific composite indices of vulnerability with 𝜷 the associated coefficients, 𝒃𝑖 is a city-

specific random effect and 𝜺𝑖𝑗 is the residual of the model. This model allows each coefficient in �̂�𝑖𝑗 to be 

affected differently by the components of model (1). 

As there was still residual heterogeneity once model (1) was fitted, in a fourth step we extracted the best linear 

unbiased prediction (BLUP) of the multivariate residuals �̂�𝑖 and interpolated them through kriging. The details 

of each of these four steps of model building are given in subsections B.1. to B.4. below. 

Finally, the model built in the second stage was used to predict exposure-response functions (ERF) at all 

locations and for age groups: 20-44, 45-64, 65-74, 75-84 and 85+. These city-age ERFs were then used to assess 

the health impact of non-optimal temperature through the computation of the excess number of deaths, as well 

as raw and standardized excess mortality rates. Subsection B.5. below gives details on the quantification of the 

health impact. 
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Figure S3: Flowchart describing the modelling framework. Squares represent input/output data while ellipses 

represent models/processes. Blue represents input data, grey derived data and green output data. 

  



12 

 

B.1. Spatial background 

To represent a spatial background, we included indicators 𝜸𝑟(𝑖) in equation (1) representing the four European 

regions as defined by the United Nations M49 standard6 (see Supplementary Figure S4). Note that to simplify 

the prediction, we included the regional factor with Helmert contrasts7, where the intercept of the model 

represents the average effect across regions. This allowed us to simply discard the 𝜸𝑟(𝑖) coefficients to predict 

average risks encompassing all regions (such as those in Figure 1 of the main manuscript).  

The regional background as described above was chosen over other alternative definitions, obtained through: i) 

separate natural splines (with 2df) of latitude and longitude, ii) a bi-dimensional spline (with 2x2df) of latitude 

and longitude, and iii) indicators of the Köppen-Geiger climate classification. The background based on UN 

regions was the most balanced and led to the model with the lowest AIC, as shown in Supplementary Table S5.  

Region-specific exposure-response functions are shown in Supplementary Figure S5. It shows that relative risks 

associated with extreme cold are higher in the southern and western region. Risks associated with heat are lower 

in the southern region. The MMP is also lower in the eastern region, resulting in higher overall effect of heat. 

 

Table S5: Comparison of the Akaike Information Criterion (AIC) for second-stage meta-regression models 

using different definitions of regional backgrounds. 

Background type Model term AIC 

Null model None 3283 

Regions 𝜸𝑟(𝑖) with 𝑟(𝑖) corresponding the UN M49 region 3169 

Latitude and Longitude 𝑠(𝑙𝑎𝑡) + 𝑠(𝑙𝑜𝑛)  3182 

Latitude and Longitude with 
interaction 

𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔)  3191 

Köppen-Geiger Climate 

classification 
𝜸𝑘𝑔(𝑖) with 𝑘𝑔(𝑖) corresponding to the climate class 3249 
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Figure S4: Map of the four European United Nations M49 regions.  
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Figure S5: Region-specific exposure-response functions between temperature and mortality. 
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B.2. Modelling differential risks by age 

The first-stage time series regression model was performed on each age group in the MCC dataset, with age 

groups differing by country (see Supplementary Table S2). However, the number of deaths recorded can be very 

low for the youngest age groups in smaller cities, resulting in unstable first-stage estimates and low statistical 

power.8 Therefore, when the total death count in the series is below 5000 for an age group, we aggregated it 

with the older one when available.  

Because the age groups differ between countries in the MCC dataset, we included age as a continuous age 

variable 𝑎𝑖𝑗 ∈ [0; 100] in the second-stage model. For each city 𝑖 and each age group 𝑗 available in the first 

stage, we computed an associated average age of death 𝑎𝑖𝑗  as a simple weighted mean of the ages within the 

group, i.e: 

 
𝑎𝑖𝑗 =

∑ 𝑤𝑖𝑘𝑘𝑢
𝑘=𝑙

∑ 𝑤𝑖𝑘
𝑢
𝑘=𝑙

 (2) 

where 𝑙 and 𝑢 are the age boundaries of the group and 𝑤𝑖𝑘  are the death rates associated with age 𝑘 in city 𝑖. 
Note that for the oldest age group, we instead used the life expectancy at the lower bound (e.g. at 85 for the 

group 85 and older). Death rates and life expectancy are extracted for each city from Eurostat (see 

Supplementary Table S3). 

The average ages of death 𝑎𝑖𝑗  were then included as a continuous linear term in the second stage model. 

Nonlinear terms of age through a natural spline with various knot placements were also investigated but resulted 

in highest AIC compared to the linear term, as shown by Supplementary Figure S6.  

For predictions at age groups in the third stage, we repeated the process. For each city and each age group 

considered, we computed the average age of death within this age group using equation (2), or alternatively we 

used life expectancy at 85 for age group 85 and older.  

 

Figure S6: Akaike Information Criterion of the second-stage meta-regression model with different age term 

specifications. Red indicates the specification with the lowest AIC. ‘df’ refers to degrees of freedom, namely a 

specification in which the knots are regularly placed along with the age domain. 
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B.3. Partial least-squares components 

We accounted for a full list of 22 variables 𝒁𝑖  representing diverse socio-economic and environmental 

characteristics. However, many of these variables are highly correlated as shown in Supplementary Figure S7. 

We therefore used Partial Least Squares (PLS)9 to construct uncorrelated composite indices of vulnerability of 

the form 𝑿𝑖 = 𝒁𝑖𝑹 with the weights in 𝑹 chosen such that that their variance and correlation with �̂�𝒊𝒋  are both 

maximal, and all components in 𝑿𝒊 are independent from each other. In other words, the weight matrix 𝑹 solve 

the following optimisation problem:10 

 �̂� = argmax corr(�̂�𝑖𝑗 , 𝑿𝑖)var(𝑿𝑖)  (3) 

subject to the constraint that the components in 𝑿𝑖  are uncorrelated from each other. This optimisation problem 

is solved iteratively, by extracting the coefficients of the first component from a singular value decomposition 

(SVD) of the covariance matrix between 𝑍𝑖 and �̂�𝑖𝑗, then the coefficients of the second component by the same 

process on the residuals left by the first SVD, and so on.11  

Note that the PLS is equivalent to applying a shrinkage penalisation to the coefficients applied to each of the 

individual variables in 𝒁𝑖 , with the shrinkage factor depending on the number of components of 𝑿𝑖  included in 

the model.10 Therefore, the effect of individual factors is biased in order to reduce the variance induced by the 

high-dimensionality and correlation between factors. We chose this number of components at 4 by minimizing 

the AIC, as shown in Supplementary Figure S8. These four components are used as composite indicators of 

vulnerability in the second-stage meta-regression, and are meant to capture the geographical variability in risks 

across the European cities. 

Supplementary Figure S9 shows the correlation between each of the select composite indices of vulnerability 

and each meta-predictor, Supplementary Figure S10 displays the spatial distribution of the PLS components, 

and Supplementary Figure S11 illustrates the difference in risks at the higher and lower ends of each component 

distribution. The first component indicates decreased risk of heat and cold for locations with higher hospital bed 

rates and temperature range and lower amounts of small woody features. The second components is mostly 

associated with smaller, poorer and humid cities, with highly increased risks of cold but slightly decreased risks 

of heat. The third component represents highly populated cities with low amounts of small woody features, 

mostly common in the Mediterranean area. It is associated with highly increased risks of cold and marginally 

increased risks of heat. Finally, component 4 represents smaller and greener cities most common in northern 

Europe and Germany. It is associated with increased MMP, although with steeper effect of heat and lower risks 

of cold. 
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Figure S7: Correlation matrix between meta-predictors used in PLS. 

 

 

Figure S8: Akaike Information Criterion of the second-stage meta-regression model with a different number of 

PLS components in the model. 
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Figure S9: Correlation between PLS components and individual meta-predictors. 

 

 

Figure S10: Geographical distribution of the values of each PLS component used in the second stage meta-

regression. 
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Figure S11: Predicted exposure-response relationship at extreme percentiles of the distribution of each PLS 

component.  
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B.4. Kriging interpolation of the random effects 

Supplementary Figure S12 shows the fixed-effects predictions versus the best linear unbiased predictions 

(BLUP) from the second-stage model (1), indicating some divergences. This can lead to biases in the predicted 

risks across geographical areas. An example is shown for the city of Munich in Supplementary Figure S13, for 

which the prediction substantially over-estimates risk associated with heat. This divergence captured by the 

random effects can represent geographical clusters of vulnerability that are not explained by the PLS 

components and the spatial background. We therefore added an additional spatial interpolation step to model 

such local deviations in risks, using BLUP residuals �̂�𝑖 from MCC locations.  

Spatial interpolation was performed by kriging. Briefly, assuming for now that 𝑏𝑖 is univariate, Kriging predicts 

𝑏𝑖 at any point in a spatial domain as a linear combination of all measured values. i.e. the kriged surface at a new 

location 𝐼 is:  

 �̂�𝐼 = ∑ 𝑤𝐼𝑖𝑏𝑖

𝑖

  (4) 

It was shown that the best linear unbiased prediction �̂�𝐼 uses weights defined as 

 𝒘𝐼 = [𝑤𝐼1, … , 𝑤𝐼𝑛] = 𝑣𝑇𝑉−1 (5) 

where 𝑣 is the vector containing the covariance of between 𝑏𝐼 and all observed locations 𝑏𝑖, and 𝑉 is the 

(co)variance matrix of the observed 𝑏𝑖.
12 Note that formulae (4) and (5) assume that there is no trend in 𝑏𝑖 and 

that residuals are Gaussian. Both assumptions are respected by the definition of random effects 𝑏𝑖 that are 

assumed Gaussian with null mean by design.5 The formulas (4) and (5) can straightforwardly be extended to the 

case of multivariate 𝒃𝑖.
13 

As there is only one realization of 𝑏𝑖 at each observed location 𝑖, the covariances in 𝑣 and 𝑉 cannot be directly 

estimated. Therefore, ordinary Kriging assumes that the covariance between two locations 𝑖 and 𝑗 follows a 

covariance function 𝛾(ℎ) that depends only on the distance ℎ between the two locations. This covariance 

function 𝛾(ℎ) can then be estimated by a variogram, which measures the variance of the difference of 

measurement according to their distance.14 A parametric function can then be fitted to the variogram, and then 

be used to define the values in 𝑣 and 𝑉 in (5). Note that in the case of multivariate 𝒃𝑖 several variogram have to 

be fitted, one for each dimension in 𝒃𝑖 and one (co)variogram for each pair of dimensions in 𝒃𝑖. 

Supplementary Figure S14 shows the empirical (co)variogram for 𝒃𝑖. These variogram displays important 

nugget effects (the variogram at distance 0) and ranges of around 500 km, indicating smooth surfaces.15 This is 

confirmed by the kriged surfaces shown in Supplementary Figure S15. It also shows that the fifth dimension, 

corresponding to the last coefficient of the ERF, is the one with the highest magnitude, i.e. the residual spatial 

heterogeneity is more important for heat. 

Once kriging had been performed, we extracted the predictions of �̂�𝑖 for each city in the Urban Audit dataset. 

This local deviation in risk was then added to the prediction made by the second-stage meta-regression model 

for each city. As fixed and random effects are independent by design in the mixed-effects framework5, the final 

covariance matrix of predicted spline coefficients is simply the sum of covariances matrices from the meta-

regression model and the kriging. Note that Kriging is an exact interpolator, i.e. the prediction at observed 

locations (here MCC locations) is equal to the observed value.15 Therefore, at these locations the result is 

exactly equal to the BLUP of the second-stage meta-regression model. 
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Figure S12: Relative risks (RRs) for cold (1st percentile) and heat (99th percentile) obtained as fixed-effects 

predictions versus BLUP. 

 

 

Figure S13: Example of the discrepancy between BLUP estimate and prediction by model (1), using as an 

example the city of Munich (Germany) for the age group 65 and older. 
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Figure S14: Empirical variograms showing the variance of the difference between values versus the distance, 

and fitted models. 
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Figure S15: Interpolated surfaces for each BLUP residual. 
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B.5. Computation of excess mortality and uncertainty 

The final model built in the second stage was used to predict ERFs for each of the 801 cities and five groups: 

20-44, 45-64, 65-74, 75-84, 85+. We excluded the population less than 20 years old as the low counts for the 

youngest age groups make the estimates less reliable. We then computed the excess number of deaths and 

mortality rates from these ERFs, using classical formulae for attributable risk.16 Since mortality series were not 

available for all cities and age groups, the baseline mortality were computed from the crude annual death rates 

obtained from city and age-specific death rates (see Supplementary Table S3). Consistently with previous 

studies, heat and cold were defined relative to the minimum mortality temperature (MMT). These numbers were 

transformed into rates by dividing them by the population. In Figure 3 of the main manuscript, numbers are 

divided by the total population (all aged) to obtain a breakdown of ages at which temperature-related excess 

mortality occurs. When reported at the country or regional level, excess deaths are first summed across cities 

and then divided by the total country or regional-level population. For standardized excess mortality rates, age-

group-specific numbers were first divided by the age -specific population, and these rates were then weighted-

averaged using the Standard European Population for 2013. To obtain country level rates, the same 

methodology is applied, using country sums of excess mortality numbers and population. 

Uncertainty on these numbers were obtained by 1000 Monte-Carlo simulations performed at the meta-regression 

level. More specifically, we sampled from a multivariate normal distribution centred on the estimated meta-

coefficient (�̂�, �̂�𝑟(𝑖), and internal coefficients related to the spline expansion 𝑛𝑠(𝑎𝑖𝑗)) and (co)variance matrix 

derived from the second-stage model. These 1000 sampled meta-regression coefficients were then used to 

predict 1000 sets of city and age-group-specific spline coefficients �̂�𝑖𝑗
𝒔 , to which we added 1000 sampled kriged 

�̂�𝑖
𝑠 also from a multivariate normal distribution (𝑠 = 1, … ,1000). These 1000 sets of final spline coefficients 

�̂�𝑖𝑗
𝒔 + �̂�𝑖

𝑠 were then used to generate 1000 sets of exposure-response functions and standardized rates. Note that, 

as the random effect �̂�𝑖 is assumed independent from the other components of the model, the (co)variance 

matrices from the fixed effect and random effect simulations can simply be added. We then computed all health 

impact measures mentioned above for each simulated sample 𝑠 and obtained 95% empirical confidence intervals 

by extracting the 2.5th and 97.5th quantiles of the simulated values of excess numbers, rates, and standardized 

rates. 
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C. Additional results 

C.1. Additional plots 

 

Figure S16: Overall cumulative exposure-response functions by country at 65 years old. The thicker line 

represents the captial city. 
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C.2. Sensitivity to August 2003 

The month of August 2003 is excluded from the main analysis because of the high sensitivity of some results to 

this month, in particular Paris that saw unprecedented mortality during this period. We show here some results 

obtained with August 2003 remaining in the analysis. Figure S17 shows the RR of capital cities (as in Figure 2 

of the main manuscript) and shows that keeping August 2003 results in exceptionally high RR of heat for Paris, 

and less strinkingly for Lisbon. Figure S18 shows excess deaths and presents key differences with the version in 

the main manuscript, including higher impacts for France, and mucher lower impacts of heat for Latvia and 

Lithuania. Finally, Table S6 shows country level results, and particularly shows that including August 2003 

results in almost 10% increase of cold-related annual death across Europe. Indeed, including this event shifts 

significantly the MMP in some places. 

 

 

Figure S17: Cold (1st percentile of temperature, in blue) and heat (99th percentile of temperature, in red) relative 

risks (RRs) in capital cities for five age groups with August 2003 kept in the analysis.  
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Figure S18:  Country-level cold (in blue) and heat (in red) annual raw death rates broken down by age group, 

with August 2003 kept in the analysis.  
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Table S6: Country-level annual excess number of deaths, attributable fractions, raw and age-standardised rates for cold and heat for the population aged 20 and above with 

August 2003 in the analysis. Brackets indicate 95% empirical confidence intervals. 

Region Country 
Excess deaths Attributable fraction (%) 

Excess death rates 

(x 100,000) 

Standardized excess death rates 

(x 100,000) 

Cold Heat Cold Heat Cold Heat Cold Heat 

Northern 

Denmark 
1,256  

(995 - 1,491) 

31  

(4 - 52) 

8.23  

(6.52 - 9.77) 

0.20  

(0.03 - 0.34) 

137  

(108 - 163) 

3  

(0 - 6) 

157  

(125 - 188) 

4  

(1 - 7) 

Estonia 
730  

(529 - 933) 

23  

(7 - 38) 

8.52  

(6.18 - 10.90) 

0.27  

(0.09 - 0.45) 

166  

(120 - 212) 

5  

(2 - 9) 

177  

(128 - 227) 

6  

(2 - 9) 

Finland 
2,227  

(1,575 - 2,840) 

51  

(1 - 89) 

9.27  

(6.55 - 11.81) 

0.21  

(0.00 - 0.37) 

153  

(108 - 194) 

4  

(0 - 6) 

165  

(118 - 211) 

4  

(0 - 7) 

Ireland 
1,571  

(1,367 - 1,772) 

7  

(-1 - 16) 

12.00  

(10.44 - 13.52) 

0.06  

(-0.01 - 0.12) 

144  

(125 - 162) 

1  

(-0 - 1) 

213  

(185 - 241) 

1  

(-0 - 2) 

Latvia 
2,035  

(1,128 - 2,796) 

49  

(-55 - 129) 

9.44  

(5.23 - 12.98) 

0.23  

(-0.26 - 0.60) 

233  

(129 - 320) 

6  

(-6 - 15) 

236  

(132 - 324) 

6  

(-6 - 15) 

Lithuania 
2,181  

(1,225 - 3,077) 

54  

(-56 - 145) 

8.89  

(5.00 - 12.55) 

0.22  

(-0.23 - 0.59) 

211  

(118 - 298) 

5  

(-5 - 14) 

221  

(125 - 310) 

6  

(-6 - 15) 

Norway 
1,128  

(819 - 1,432) 

27  

(6 - 46) 

10.28  

(7.46 - 13.05) 

0.25  

(0.06 - 0.41) 

136  

(99 - 173) 

3  

(1 - 5) 

174  

(126 - 220) 

4  

(1 - 7) 

Sweden 
4,098  

(3,318 - 4,887) 

117  

(59 - 167) 

8.77  

(7.10 - 10.46) 

0.25  

(0.13 - 0.36) 

146  

(118 - 174) 

4  

(2 - 6) 

151  

(122 - 180) 

4  

(2 - 6) 

United Kingdom 
44,685  

(39,180 - 50,009) 

864  

(614 - 1,095) 

10.28  

(9.02 - 11.51) 

0.20  

(0.14 - 0.25) 

168  

(148 - 188) 

3  

(2 - 4) 

190  

(167 - 213) 

4  

(3 - 5) 

Total 
59,911  

(52,793 - 66,932) 

1,224  

(774 - 1,582) 

10.00  

(8.81 - 11.17) 

0.20  

(0.13 - 0.26) 

166  

(147 - 186) 

3  

(2 - 4) 

187  

(165 - 209) 

4  

(2 - 5) 

Western 

Austria 
1,823  

(1,063 - 2,570) 

208  

(145 - 266) 

5.71  

(3.33 - 8.05) 

0.65  

(0.45 - 0.83) 

94  

(55 - 132) 

11  

(7 - 14) 

104  

(61 - 146) 

12  

(8 - 15) 

Belgium 
2,289  

(1,525 - 3,023) 

261  

(208 - 310) 

4.90  

(3.27 - 6.47) 

0.56  

(0.45 - 0.66) 

93  

(62 - 123) 

11  

(8 - 13) 

90  

(59 - 119) 

10  

(8 - 12) 

France 
27,708  

(22,393 - 32,502) 

1,911  

(1,679 - 2,135) 

9.31  

(7.52 - 10.92) 

0.64  

(0.56 - 0.72) 

154  

(125 - 181) 

11  

(9 - 12) 

140  

(113 - 164) 

10  

(9 - 11) 

Germany 
21,744  

(15,294 - 27,717) 

2,880  

(2,385 - 3,345) 

4.82  

(3.39 - 6.14) 

0.64  

(0.53 - 0.74) 

93  

(65 - 118) 

12  

(10 - 14) 

90  

(63 - 114) 

12  

(10 - 14) 

Luxembourg 
75  

(55 - 95) 

8  

(7 - 9) 

7.73  

(5.74 - 9.87) 

0.83  

(0.69 - 0.96) 

107  

(79 - 136) 

11  

(10 - 13) 

136  

(101 - 174) 

14  

(12 - 17) 

Netherlands 
4,141  

(2,084 - 6,185) 

514  

(389 - 639) 

4.46  

(2.25 - 6.67) 

0.55  

(0.42 - 0.69) 

73  

(37 - 110) 

9  

(7 - 11) 

85  

(43 - 127) 

10  

(8 - 12) 
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Switzerland 
1,427  

(972 - 1,853) 

180  

(134 - 223) 

4.56  

(3.10 - 5.92) 

0.58  

(0.43 - 0.71) 

72  

(49 - 94) 

9  

(7 - 11) 

72  

(49 - 93) 

9  

(7 - 11) 

Total 
59,206  

(46,788 - 70,794) 

5,962  

(5,113 - 6,741) 

6.21  

(4.91 - 7.43) 

0.63  

(0.54 - 0.71) 

111  

(88 - 132) 

11  

(10 - 13) 

107  

(84 - 128) 

11  

(9 - 12) 

Eastern 

Bulgaria 
6,038  

(4,749 - 7,271) 

549  

(302 - 799) 

9.72  

(7.64 - 11.70) 

0.88  

(0.49 - 1.29) 

233  

(183 - 280) 

21  

(12 - 31) 

279  

(220 - 335) 

25  

(14 - 36) 

Czechia 
3,797  

(2,531 - 5,104) 

247  

(126 - 363) 

8.17  

(5.45 - 10.99) 

0.53  

(0.27 - 0.78) 

150  

(100 - 202) 

10  

(5 - 14) 

184  

(123 - 246) 

12  

(6 - 17) 

Hungary 
5,525  

(4,181 - 6,815) 

434  

(274 - 594) 

9.16  

(6.93 - 11.30) 

0.72  

(0.46 - 0.98) 

197  

(149 - 243) 

15  

(10 - 21) 

221  

(167 - 272) 

17  

(11 - 24) 

Poland 
17,535  

(13,312 - 21,622) 

1,384  

(891 - 1,878) 

8.96  

(6.80 - 11.05) 

0.71  

(0.46 - 0.96) 

169  

(128 - 208) 

13  

(9 - 18) 

193  

(147 - 238) 

15  

(10 - 20) 

Romania 
13,270  

(10,559 - 15,970) 

1,086  

(698 - 1,491) 

10.27  

(8.17 - 12.36) 

0.84  

(0.54 - 1.15) 

221  

(176 - 266) 

18  

(12 - 25) 

269  

(214 - 323) 

22  

(14 - 30) 

Slovakia 
1,254  

(952 - 1,542) 

107  

(62 - 149) 

8.88  

(6.74 - 10.91) 

0.76  

(0.44 - 1.05) 

143  

(109 - 176) 

12  

(7 - 17) 

210  

(160 - 257) 

18  

(10 - 24) 

Total 
47,420  

(36,720 - 57,337) 

3,806  

(2,453 - 5,138) 

9.34  

(7.23 - 11.29) 

0.75  

(0.48 - 1.01) 

188  

(146 - 227) 

15  

(10 - 20) 

222  

(173 - 268) 

18  

(12 - 24) 

Southern  

Croatia 
1,620  

(1,066 - 2,165) 

370  

(251 - 479) 

7.11  

(4.68 - 9.50) 

1.62  

(1.10 - 2.10) 

147  

(97 - 197) 

34  

(23 - 43) 

168  

(111 - 225) 

38  

(26 - 49) 

Cyprus 
492  

(384 - 600) 

67  

(47 - 86) 

8.04  

(6.28 - 9.82) 

1.10  

(0.77 - 1.41) 

108  

(84 - 131) 

15  

(10 - 19) 

161  

(126 - 196) 

21  

(15 - 28) 

Greece 
4,335  

(3,080 - 5,536) 

695  

(445 - 960) 

6.45  

(4.58 - 8.24) 

1.03  

(0.66 - 1.43) 

127  

(91 - 163) 

20  

(13 - 28) 

118  

(84 - 150) 

19  

(12 - 26) 

Italy 
23,917  

(18,259 - 29,558) 

4,858  

(3,941 - 5,784) 

6.94  

(5.30 - 8.57) 

1.41  

(1.14 - 1.68) 

139  

(106 - 172) 

28  

(23 - 34) 

115  

(88 - 142) 

24  

(19 - 28) 

Malta 
165  

(112 - 212) 

31  

(19 - 42) 

7.15  

(4.88 - 9.22) 

1.35  

(0.81 - 1.83) 

97  

(66 - 125) 

18  

(11 - 25) 

128  

(87 - 165) 

24  

(14 - 32) 

Portugal 
5,101  

(3,996 - 6,296) 

562  

(484 - 642) 

7.76  

(6.08 - 9.58) 

0.86  

(0.74 - 0.98) 

148  

(116 - 182) 

16  

(14 - 19) 

144  

(113 - 178) 

16  

(14 - 18) 

Slovenia 
275  

(159 - 395) 

68  

(44 - 91) 

5.34  

(3.10 - 7.69) 

1.32  

(0.85 - 1.76) 

89  

(52 - 129) 

22  

(14 - 30) 

97  

(56 - 139) 

24  

(15 - 32) 

Spain 
18,266  

(12,495 - 23,803) 

2,894  

(2,178 - 3,619) 

5.53  

(3.78 - 7.20) 

0.88  

(0.66 - 1.09) 

97  

(67 - 127) 

15  

(12 - 19) 

87  

(59 - 114) 

14  

(11 - 18) 

Total 
54,170  

(40,077 - 67,785) 

9,545  

(7,591 - 11,520) 

6.41  

(4.75 - 8.03) 

1.13  

(0.90 - 1.36) 

121  

(89 - 151) 

21  

(17 - 26) 

107  

(79 - 134) 

19  

(15 - 23) 

Total 
220,706  

(197,262 - 243,103) 

20,538  

(17,628 - 23,085) 

7.60  

(6.79 - 8.37) 

0.71  

(0.61 - 0.79) 

138  

(124 - 152) 

13  

(11 - 14) 

139  

(124 - 153) 

13  

(11 - 15) 
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