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ABSTRACT: Historical PM2.5 data are essential for assessing the
health effects of air pollution exposure across the life course or
early life. However, a lack of high-quality data sources, such as
satellite-based aerosol optical depth before 2000, has resulted in a
gap in spatiotemporally resolved PM2.5 data for historical periods.
Taking the United Kingdom as an example, we leveraged the light
gradient boosting model to capture the spatiotemporal association
between PM2.5 concentrations and multi-source geospatial
predictors. Augmented PM2.5 from PM10 measurements expanded
the spatiotemporal representativeness of the ground measure-
ments. Observations before and after 2009 were used to train and
test the models, respectively. Our model showed fair prediction accuracy from 2010 to 2019 [the ranges of coefficients of
determination (R2) for the grid-based cross-validation are 0.71−0.85] and commendable back extrapolation performance from 1998
to 2009 (the ranges of R2 for the independent external testing are 0.32−0.65) at the daily level. The pollution episodes in the 1980s
and pollution levels in the 1990s were also reproduced by our model. The 4-decade PM2.5 estimates demonstrated that most regions
in England witnessed significant downward trends in PM2.5 pollution. The methods developed in this study are generalizable to other
data-rich regions for historical air pollution exposure assessment.
KEYWORDS: PM2.5, LightGBM, back extrapolation, U.K., SHAP, spatiotemporal patterns, exposure analysis

1. INTRODUCTION
Extensive scientific evidence across disciplines has demon-
strated that both short- and long-term exposure to fine
particles with an aerodynamic diameter smaller than 2.5 μm
(PM2.5) is associated with a broad range of adverse health
effects, including cardiovascular, respiratory, and neurological
effects, with varying severity at different stages of life.1−3 To
prevent the morbidity and mortality of these diseases, more
detailed evidence is needed about the heterogeneity of the
associations across sites and periods.4 Long-term historical
PM2.5 data are essential to support such spatial and temporal
exposure analyses. However, PM2.5 in situ measurements were
scarce before the late 2000s even in developed countries, like
the United Kingdom.5−7 Besides, partly as a result of the lack
of high-quality model input, like satellite-based aerosol optical
depth (AOD),8,9 many long-term global,10−12 Europe-wide,8

or nationwide6,13,14 PM2.5 models only went back to around
2000, making it hard to assess early life or life course exposure.
Although recent studies have attempted to extend the time

span of PM2.5 models to several decades, there are some
important limitations. First, studies based on the atmospheric
chemistry transport model (ACTM), which simulated air
pollutant concentrations over several decades with surrogate
meteorological input data,5,15 were designed to evaluate policy

effects rather than to reproduce actual historical pollution
levels. Second, studies based on statistical models that used
long-term ground visibility observations as input to back
extrapolate PM2.5 concentrations16,17 were limited by the
spatial coverage and uncertainty of the visibility data.
Specifically, visibility data are limited by their relative
inaccuracy in high values and inconsistency as they shifted
from human observers to automated sensors.17,18 Third, the
time span of the training data set in some previous statistical
exposure studies was less than 3 years,17,19 which could hardly
capture the interannual difference in air pollution levels. Lastly,
many studies estimated PM2.5 concentrations at coarse
spatiotemporal resolutions (e.g., 0.25° × 0.25°)20 and annual
mean16, which could not produce spatiotemporal-resolved
exposure metrics based on different exposure durations.
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Therefore, it is challenging to back extrapolate long-term
spatiotemporally resolved PM2.5 concentrations without high-
quality satellite-based AOD products and simulations from
ACTMs. The U.K. has more than 20 years of regulatory
monitoring in PM2.5 and high-quality multi-source geospatial
data sets that could reflect the historical variations of PM2.5
pollution, making it a good example to investigate the method
of back extrapolation in data-rich regions. In this study, we aim
to utilize an advanced machine learning algorithm, the light
gradient boosting model (LightGBM),21 to capture reliable
long-term spatiotemporal associations between daily PM2.5
concentrations and multi-source geographical predictors in
the U.K. The model is validated with cross-validation (CV),
external testing, and comparison to previous studies. We then
derive a series of high-resolution (1 × 1 km) data sets for daily
prediction of PM2.5 from 1980 to 2019 and discuss the
spatiotemporal patterns of PM2.5 pollution.

2. MATERIALS AND METHODS
2.1. Data Preparation. 2.1.1. Study Area and Period. Our

study includes the four countries of the U.K., namely, England,
Wales, Scotland, and Northern Ireland, as well as the self-
governing Isle of Man. A fishnet containing 245 052 1 km grid
cells was created to cover the whole study area (Figure S1 of
the Supporting Information) based on the Ordnance Survey
National Grid. The boundary data used in this study were from
the U.K. government and are licensed under the Open
Government License, version 3.0. We estimated the PM2.5
concentrations from January 1, 1980 to December 31, 2019 as
a result of data availability, which was described in detail
below.

2.1.2. In Situ Monitored Data. Measurements of hourly
PM2.5 and PM10 concentrations were obtained from seven
monitoring network sources in the U.K.: Automatic Urban and
Rural Network (AURN), Air Quality England network, Air
Quality Wales network, Air Quality Scotland network,
Northern Ireland network, King’s College London (KCL)

network, and locally managed AQ networks in England
(hereafter referred to as “local networks”). We used R package
openair22 to download PM2.5 observations from 1998 to 2019
and PM10 observations from 2010 to 2019. PM10 observations
before 2009 were not included in the back extrapolation of
historical PM2.5 data as a result of the poor results of a
preliminary analysis that attempted to augment the historical
PM2.5 measurements with PM10 observations from 1992 to
2009. We define the former five network sources as national
networks and the latter two network sources as regional
networks, depending upon whether they are part of the
national monitoring strategy of the U.K. All of the observations
from the national networks have been ratified23 before
download and used for model development, validation, and
testing. Observations from regional networks were not
combined with those from the national networks, because
they may not be fully comparable. We used the observations
from the regional networks for the external model testing to
demonstrate the performance of our model on the best
available data sets, despite the regional networks’ limited
spatial coverage.
Monitors with less than 18 h records were excluded when

aggregating to daily average PM concentrations. The
observations from different national networks in the same
coordinates were in good agreement; we thus chose
observations from AURN, the largest automatic monitoring
network, for further analysis.
Measurements of PM2.5 started in 1998 and had not been

widespread until 2010.6 In national networks, there were 196
co-located stations measuring both PM10 and PM2.5, 25 PM2.5-
only stations, 174 PM10-only stations from 2010 to 2019, and
72 PM2.5 stations from 1998 to 2009 (see Figure S2 of the
Supporting Information). Regional networks have fewer and
unevenly distributed stations, with 60 PM2.5 stations from 2010
to 2019 and 14 PM2.5 stations from 2001 to 2009 (Figure S3 of
the Supporting Information). All observations were assigned
with a grid-cell ID. Mean values were calculated if a grid cell

Figure 1. Schematics of the model developed in this study (upper panel), workflow of modeling (left bottom panel), and optimization features of
the LightGBM algorithm (right bottom panel). QC, quality control; LightGBM, light gradient boosting model; CV, cross-validation; GOSS,
gradient-based one-side sampling; EFB, exclusive feature bundling; an instance means a data sample; a feature means a predictor variable; #bin,
number of bins; #data, number of data samples; #bundle, number of feature bundles; and #feature, number of features.
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had more than one monitor. Grids with less than 7 day records
per month and 9 months per year were excluded.

2.1.3. Auxiliary Predictors. Auxiliary predictors used in this
study include meteorological factors, aerosol reanalysis,
emission inventory, land cover data, road network, terrain
data, anthropogenic activities (see Table S1 and Text S1 of the
Supporting Information for details about data sources and
preparations), and spatiotemporal weights. We utilized
spatiotemporal weights to incorporate spatiotemporal hetero-
geneity and hidden predictors, such as the transboundary
transport of pollutants from continental Europe, which
contributes significantly to PM2.5 pollution in the U.K.,24 as
a previous study did.19 The spatial weights were represented by
the geographic distances to the four corners and the center of a
rectangle around our study area using the Euclidean distance
(see details in Figure S4 of the Supporting Information). The
temporal information was represented by the order of a day in
a week and the time intervals to the middle of each season like
a previous study did25 (see details in Text S2 and Table S2 of
the Supporting Information).

2.2. Model Development and Validation. A two-stage
model was developed to capture the long-term spatiotemporal
association between PM2.5 concentrations and multi-source
predictors, as shown in the upper panel in Figure 1. Each stage
is described in detail below. In brief, stage 1 used co-located
PM10 measurements to construct a model to augment PM2.5
observations. Stage 2 used the LightGBM algorithm with the
fusion of the original PM2.5 observations and augmented PM2.5
values to back extrapolate historical PM2.5 concentrations. We
chose LightGBM, which has been used in several previous
studies,26−28 as the workhorse in our study for its strength in
faster computation speed, lower memory consumption, and
capability of handling big data when compared to other
advanced algorithms, like extreme gradient boosting21 (see
more details in Text S3 of the Supporting Information). The
model development was conducted with R package mlr329 and
lightgbm.30

2.2.1. Stage 1: Augmenting PM2.5 Observations Using Co-
located PM10 Measurements. PM10 measurements are more
widely distributed than PM2.5 in the U.K.,6 as shown in Figure
S2 of the Supporting Information. Stage 1 aims to improve the
spatiotemporal distribution of data samples in the stage 2
model with PM10 observations. In this case, the spatiotemporal
representativeness of the data samples will be enhanced, which
could reduce the bias.
The workflow of modeling is shown in the left bottom panel

of Figure 1. Correlation analysis was performed between the
pollutant concentrations and the predictor variables and
between each pair of predictor variables, respectively. The
predictor variables with a lower correlation coefficient within
paired predictors whose correlation coefficients were greater
than 0.70 were excluded to mitigate the multicollinearity
problem that could lead to overfitting.31,32 All of the predictors
were scaled and centered before being fed into the models. All
of the co-located PM10 and PM2.5 data sets were used as the
development set (see more details in Text S4 of the Supporting
Information).
There were 10 hyperparameters to tune in the LightGBM-

based PM2.5 augment model. Because the target of stage 1 is to
estimate PM2.5 concentrations in locations where only PM10
measurements were available, which is about spatial extrap-
olation, a target-oriented CV strategy, 10-fold grid-based CV
(it was referred to as “spatial CV” in previous studies12,33) was

used to determine the optimal vector of hyperparameters. Data
samples were divided into 10 groups randomly based on their
grid IDs; i.e., samples from the same grid cell would not be
split. In each iteration, nine groups of data were used as
training data, while the other data were held out for validation.
The training and validation process was repeated 10 times until
the data of each group had been validated. Root mean square
error (RMSE) was used as the loss function. We randomly
compared 100 vectors of hyperparameters in this study, and
the values of hyperparameters were shown in Table S3 of the
Supporting Information. Statistical indicators, including the
coefficient of determination (R2), RMSE, and mean absolute
error (MAE), were calculated to evaluate the model perform-
ance.

2.2.2. Stage 2: Back-Extrapolating Historical PM2.5. PM2.5
augments derived from stage 1 could not simply be treated as
ground observations for their uncertainty. Therefore, weights
were needed to treat the original PM2.5 measurements and
augment differently to enhance the spatiotemporal representa-
tiveness of data samples without hurting the data quality. We
used the RMSE with sample weights as the loss function
during the tuning process, as shown in eq 1. For data samples
from original PM2.5 measurements, we set the weight to 1, and
for augments, we chose the weight from 0, 0.1, 0.3, 0.5, and 0.7
based on the model performance

=
=n

w t rweighted RMSE
1

( )
i

n

i i i
1

2

(1)

where n is the number of samples, ti and ri represent the
ground measurement (truth) and the prediction (response) of
the model of a data sample i, respectively, and wi represents the
weight of a data sample i.
The workflow of the stage 2 model was similar to that of the

stage 1 model. The differences lay in the predictors selected,
splitting data sets, CV strategy, and assessment of the model
performance.
A total of 10 years of data (from 2010 to 2019) from

national networks were used to train and validate the models.
Another target-oriented CV strategy, 10-fold by-year CV,
which has been used in our previous study,34 was used to
determine the optimal vector of hyperparameters for a reliable
historical estimator. In this case, data samples were divided
into 10 groups randomly based on the calendar year. We
randomly compared 100 vectors of hyperparameters in this
study; the values of hyperparameters were also shown in Table
S3 of the Supporting Information. Observations from 1998 to
2009 from both national networks and regional networks were
used to test the spatiotemporal generalization capability of the
models in years when only few regulatory measurements were
available. Because some observations from the national
networks from 1998 to 2009 were collected at stations that
were also included in the development set from 2010 to 2019,
the model performance could be overoptimistic if the
observations from 1998 to 2009 were used directly as the
testing set. Therefore, we use a spatiotemporal testing strategy
by extending the grid-based CV method. Specifically, all of the
observations from national networks were randomly divided
into 10 groups based on their grid IDs. In each iteration, nine
groups of data samples from 2010 to 2019 were used as
training data, while data samples from 1998 to 2009 in the
other group were kept for testing. This process mimics the
prediction of historical PM2.5 levels at locations not covered by
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monitors. Only the original PM2.5 observations were used to
calculate the CV results for comparison among models with
different weights. We also applied another stricter spatiotem-
poral testing strategy, called 100 km grid-based CV. All of the
observations from national networks were assigned to 100 km
grids before being randomly divided into 10 groups based on
100 km grid IDs. This process mimics the prediction of PM2.5
levels in the past at locations that are more than 100 km away
from monitors. There are 28 agglomerations (large urban
areas) and 16 non-agglomeration zones in the study region,
which were divided for the purpose of assessing air quality
compliance.23,35 R2 values between daily PM2.5 estimates and
observations in each zone were calculated to show the
difference in the model performance in urban and non-urban
areas. Simulations from the European Monitoring and
Evaluation Programme for U.K. model (EMEP4UK), a
Eulerian model developed over the British Isles,13,14 were
used as a benchmark to explore how well our predictions could
capture the temporal variability of in situ measurements. For
years before and around 1998, the statistics of PM2.5
measurements were extracted from previous studies to test
the reliability of the model. All of the observations from the
development set from 2010 to 2019 were used to train the final
estimator.

2.3. Interpretation of Models. Complex machine
learning models are often considered “black box” models.36,37

To mitigate the effects of this lack of transparency on model
credibility,37,38 we applied two interpretation tools, feature
importance and Shapley additive explanation (SHAP),39,40 to
our models to explain how the models make predictions.
Specifically, feature importance values were estimated using the
intrinsic LightGBM gain method, which represent the total
reduction in training loss gained when using a feature to split
the data21 and reflect the impact of a predictor on model
performance. SHAP, which has been incorporated into
LightGBM,41 can distribute individualized contribution of
each predictor to the difference that each prediction deviates

from the base value,39 as shown in eq 2. SHAP has been used
in previous studies42,43 to help explain the major driving factors
of certain pollution levels

= +
=

f x f f x( ) Ø ( ) Ø ( , )
j

M

j0
1 (2)

where f(x) is the model output of a data sample x, Ø0( f) is the
base value for the model output, M is the total number of
predictors, and Øj( f,x) is the contribution of predictor j for a
data sample x.

2.4. Spatiotemporal Patterns and Population Ex-
posure Analysis. We hindcast the historical PM2.5 concen-
tration at a resolution of 1 km with the final estimator and
derived the decadal, annual, and seasonal metrics of PM2.5
pollution in the study period. Spatial patterns of pollution were
identified on the basis of the prediction maps. We also
analyzed the trends in PM2.5 pollution during the whole period
based on the monthly average to avoid the relatively high
uncertainty of daily estimates. PM2.5 anomalies were derived by
subtracting the long-term averages in the same month of the 4
decades from the monthly means in every grid cell and then
calculating the linear trends for each grid cell and subregions
with the least squares approaches as a previous study did.44

PM2.5 estimates were matched with gridded population data to
calculate the number of people exposed to specific levels of
PM2.5 pollution by year in the U.K. The groups of PM2.5
concentrations were divided on the basis of recommendations
from the World Health Organization.48

3. RESULTS
3.1. Results of Augmenting PM2.5 Observations Using

Co-located PM10 Measurements. As shown in Figure S5 of
the Supporting Information, the overall value of R2 for the grid-
based CV was 0.91 at the day level and the corresponding
RMSE was 2.41 μg/m3. During the period of the stage 1 model
(2010−2019), the values of R2 ranged from 0.88 to 0.93, with

Figure 2. Density scatterplots of the by-year CV results for the stage 2 model at (a) daily, (b) monthly, and (c) annual levels from 2010 to 2019
and the testing results at (d) daily, (e) monthly, and (f) annual levels from 1998 to 2009.
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corresponding RMSE ranging from 1.88 to 3.05 μg/m3 and
MAE ranging from 1.18 to 2.20 μg/m3 (see details in Table S4
of the Supporting Information). PM10 was the most important
predictor in the stage 1 model, playing a dominant role in both
model predictions and model performance (see Figure S6 of
the Supporting Information for details).
The stage 1 model was used to increase the sample size in

the stage 2 model. After stage 1, the number of data samples
increased by 118% (from 272 216 to 592 707) and the number
of grid cells with data samples increased by 85% (from 226 to
417). The augmentation of PM2.5 has significantly increased
sample sizes outside of England, with 79, 72, and 61% of the
data samples from Northern Ireland, Scotland, and Wales,
respectively, coming from the stage 1 model.

3.2. Results of Back-Extrapolating Historical PM2.5.
Stage 2 models were developed on the basis of different
weights to select the final weight for PM2.5 augments.
According to the testing results shown in Figure S7 of the
Supporting Information, the model with a weight of 0.3
showed the most robust performance. The difference in model
performance between the model with a weight of 0.3 and the
model with a weight of 0 revealed the improvement that the
stage 1 model brought to our study.
According to the density scatterplots of the 10-fold by-year

CV results (the upper panels in Figure 2), the values of R2 were
0.72, 0.82, and 0.81 at the daily, monthly, and annual levels,
respectively, and the corresponding RMSE values were 4.34,
2.13, and 1.42 μg/m3. Table S5 of the Supporting Information
showed that the ranges of R2 and RMSE for the CV results are
0.63−0.78 and 3.73−5.36 μg/m3, respectively, at the daily level
from 2010 to 2019.
The values of R2 for the testing result were 0.54, 0.54, and

0.50 at the daily, monthly, and annual levels, respectively, the
corresponding RMSE values were 5.65, 3.52, and 2.83 μg/m3

(the bottom panels in Figure 2). Table S6 of the Supporting

Information showed that the ranges of R2 and RMSE for the
spatiotemporal testing at the daily level are 0.32−0.65 and
5.05−7.73 μg/m3, respectively, from 1998 to 2009. The model
performance shows a subtle decline back in time, which
demonstrates that our historical predictions are reliable and
robust. The model evaluation using the 100 km grid-based CV
strategy in Table S7 of the Supporting Information showed
comparable performance to that using the 1 km grid-based
spatiotemporal CV, reflecting the robustness of our model.
The R2 values between daily average PM2.5 estimates and

observations in 44 zones and agglomerations for the develop-
ment set and testing set were shown in Figure S8 of the
Supporting Information. Densely populated urban agglomer-
ations had better performance in both data sets than rural
areas, with R2 values for the development set larger than 0.70.
North Wales showed the worst performance over the study
period.
The time series plot of estimated and observed monthly

PM2.5 concentrations from 1998 to 2009 (Figure S9 of the
Supporting Information) demonstrated that our model could
capture the long-term trends in PM2.5 pollution in different
subregions with correlation coefficients larger than 0.7.
However, an obvious overestimation occurred in the spring
of 2003 in England. We selected four sites with more than
1000 observations before 2010 to compare the predictions
from our model and the simulations from EMEP4UK, namely,
London Bloomsbury (urban background), London Maryle-
bone Road (urban traffic), Rochester Stoke (South East, rural
background), and Harwell (South East, rural background).
The time series plots in Figure S10 of the Supporting
Information indicate that our model performed better in
background sites than in the traffic site. The predictions in this
study were better correlated with measurements than the
simulations. Overestimation also occurred in 2003 in the time

Figure 3. Interpretation of the stage 2 model with (a) the SHAP summary plot for PM2.5 predictions in the development set which excluded
augmented PM2.5 and (b) feature importance of the predictors in relative percentage. The numbers next to the vertical axis in panel a represent the
mean absolute SHAP value by predictor variable. In panel a, each dot in each row represents a data sample, where the x position of each dot is the
effect of a predictor variable on the prediction of a model (i.e., the predicted PM2.5 concentration of that data sample) and the color of the dot
represents the value of that predictor variable. Dots that do not fit on the row are stacked to show density.
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series of the simulations, which would be discussed in section
4.2.
Although observations from the regional networks may not

be fully comparable to those from the national networks, our
models had comparable performance on the data set from
regional networks according to Figure S11 and Table S8 of the
Supporting Information. The ranges of R2 and RMSE for the
testing of KCL networks at the daily level are 0.42−0.77 and
5.98−13.22 μg/m3, respectively, from 2001 to 2009. For the
local networks, the ranges of R2 and RMSE for the testing at
the daily level are 0.31−0.66 and 3.48−6.52 μg/m3,
respectively, from 2002 to 2009. The correlations between
the regional average of monthly mean PM2.5 estimates and
measurements were larger than 0.77 in subregions and periods,
as shown in Figure S12 of the Supporting Information, which

were also comparable to those in Figure S10 of the Supporting
Information.
Table S9 of the Supporting Information shows the statistics

of observed PM2.5 concentrations extracted from previous
studies and predictions produced in our study. The measure-
ments were collected in Leeds (West Yorkshire, England),
Birmingham (West Midlands, England), London, Rochester
Stoke, Harwell, and Edinburgh (southeastern Scotland). The
comparison shows that the model well reproduced the
concentration levels in Birmingham, London, Rochester
Stoke, Harwell, and Edinburgh in the 1990s. The model
tended to be better at predicting period averages than at
predicting peaks. Although the model did not perform well in
predicting the absolute pollution levels in Leeds in the 1980s, it
showed the same peak periods and peak dates of PM2.5

Figure 4. Spatial distribution of decadal average PM2.5 estimations in the U.K. from 1980 to 2019.
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pollution episodes in Figure S13 of the Supporting Information
compared to the in situ measurements.45

3.3. Interpretation of Back-Extrapolating Historical
PM2.5. Aerosol reanalysis data, boundary layer height, wind
speed, temperature, and spatiotemporal terms were the most
important predictors in the stage 2 model in terms of both
model performance and prediction attribution (see Figure 3 for
details). Both black carbon and sulfate, the two most important
predictors, made robust contributions to PM2.5 concentrations
from 1998 to 2009, as shown in Figure S14 of the Supporting
Information. The SHAP dependence plots of wind in Figure
S15 of the Supporting Information show the spatial
heterogeneity in the contributions of wind to PM2.5
concentrations, reflecting the different effects of clean air and
polluted air; e.g., a westerly wind often reduces PM2.5
concentrations with a greater magnitude in the west, reflecting
the cleansing effects of air from the west (Wales or the
Atlantic). Conversely, an easterly wind often increases PM2.5
concentrations, also with a greater magnitude in the west,
reflecting the transport of air pollutants from the east (England
or continental Europe). The interpretations based on feature
importance and SHAP values showed that our model is
consistent with domain knowledge.46

3.4. Spatial Patterns of PM2.5 Pollution in the U.K. The
spatial distribution of decadal average PM2.5 estimates in the
U.K. from 1980 to 2019 (Figure 4) revealed strong spatial and
temporal variation in PM2.5 pollution. PM2.5 concentrations
were higher in England than in other subregions over the 4
decades, with areas with relatively high PM2.5 pollution (annual
average of >10 μg/m3 47,48) concentrated in urban agglomer-
ations in England, such as Greater London, Birmingham,
Manchester, etc. The relatively higher concentrations in
southeastern background areas shown in Figure 4 and Figure
S16 of the Supporting Information were partly due to the
transboundary transport of pollutants from continental Europe,
as previous studies revealed.23,35,49 The spatial distribution of
annual mean PM2.5 anomalies (using the averages in each grid
over the entire period as the baseline) in Figure S17 of the
Supporting Information clearly showed that PM2.5 concen-

trations in the U.K. had decreased significantly over the whole
study period despite significant fluctuations in some particular
years, such as 1996, 2003, and 2011. The winter and spring
months had the largest areas of pollution, while the summer
months had cleaner ambient air, as shown in Figure S18 of the
Supporting Information. The spatiotemporal patterns of back-
extrapolated PM2.5 were very similar to in situ measurements,
as shown in Figure S19 of the Supporting Information.

3.5. Trends of PM2.5 Pollution in the U.K. The gridded
monthly mean PM2.5 anomaly trends in Figure 5 present that
most areas in the U.K. showed significantly downward trends
in PM2.5 pollution over the study period. England showed the
most rapid decrease among all of the subregions, with the
fastest rate of decline of more than 0.15 μg/m3 per year. Areas
with upward trends were scarce and only distributed in low-
concentration areas. Some of the least polluted areas, such as
the Highland and Outer Hebrides in Scotland, had increased
PM2.5 concentrations with no significant trends.
PM2.5 concentrations in England had been significantly

declining all over the study period, with a faster rate of decline
up to 0.12 μg/m3 per year in the first 2-decade period (1980−
1999) than in the second 2-decade period (2000−2019).
Scotland, Wales, and Northern Ireland had a much slower rate
of decline and only witnessed significant downward trends
from 1980 to 1999, as shown in Figure S20 and Table S10 of
the Supporting Information.

3.6. Population Exposure. Figure S21 of the Supporting
Information shows the number of people exposed to specific
levels of PM2.5 pollution by year. The annual average of PM2.5
concentrations was seldom larger than 20 μg/m3 in the U.K.,
as shown in Figure S21a of the Supporting Information. The
proportion of people who were exposed to PM2.5 greater than
20 μg/m3 was usually less than 0.05%, except for 0.07% in
1982 and 0.12% in 2003. Most people lived in areas where the
annual average ranged from 10 to 15 μg/m3 over the study
periods. The changes in the proportion of people living in areas
with PM2.5 concentrations above 10 μg/m3 ranged from
67.00% in 2019 to 92.39% in 2003. The threat to the
population from long-term PM2.5 exposure decreased during

Figure 5. Spatial distribution of the (a) monthly mean PM2.5 anomaly trends and (b) changes in annual PM2.5 concentrations from 1980 to 2019.
The white areas in panel a indicate the significance level p ≥ 0.05.
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the study period. Figure S21b of the Supporting Information
shows a more fluctuated time series over years, which indicated
that short-term PM2.5 pollution episodes still posed a severe
threat to population health in the U.K.

4. DISCUSSION
4.1. Strengths and Innovations. Our study exhibits

several strengths and innovations. First, we incorporated in situ
PM2.5 measurements from seven monitoring networks and
estimated PM2.5 concentrations at PM10 monitoring sites to
enhance the spatiotemporal representativeness of the training
data samples as much as possible. To balance the data quantity
and quality, we selected a weight for augmented PM2.5 samples
based on trials and errors. To better capture the historical
trends, the time span of the training data was set at 10 years,
longer than that used in previous studies.17,19,20 Second, we
collected recently available multi-source geospatial data sets to
represent drivers or spatial proxies for PM2.5 pollution to
compensate for the role of satellite-based AOD. An advanced
tree-based ensemble algorithm, LightGBM, combined with
target-oriented CV strategies, was used to efficiently capture
the nonlinear and high-order relationship between these
predictors and PM2.5 concentrations. Third, we adopted a
comprehensive testing strategy, comprising independent
external testing and a comparison to statistics from previous
studies, to evaluate the back extrapolation capability of the
model during the years with few regulatory monitors (1998−
2009) and the years when PM2.5 measurements were extremely
scarce (before 2000). Fourth, we used interpretation methods,
such as feature importance and SHAP, to peer into the
LightGBM model, which showed that our model is in good
agreement with domain science. Lastly, we obtained historical
daily continuous PM2.5 pollution levels at a resolution of 1 km
over 4 decades in the U.K., which is one of the first to the best
of our knowledge.

4.2. Comparison to Previous Studies. Schneider et al.
reconstructed daily PM2.5 concentrations at horizontal
resolution of 1 × 1 km across Britain from 2008 to 2018
using year-specific satellite-based machine learning models,
which performed well, with overall CV R2 for the models
ranging from 0.704 to 0.821 and RMSE ranging from 3.275 to
4.547 μg/m3.6 Our model showed comparable performance in
the modeling years when using the grid-based CV strategy (the
ranges of R2 and RMSE for the CV results are 0.71−0.85 and
3.04−4.73 μg/m3, respectively, at the daily level from 2010 to
2019; see details in Table S11 of the Supporting Information),
indicating that the vector of hyperparameters tuned by the by-
year CV strategy could also capture the spatial variations of
PM2.5 pollution in the modeling years.
The spatiotemporal patterns of PM2.5 pollution derived from

the predictions in this study were also consistent with findings
from previous studies. The pollution hotspots were clustered in
urban areas in England, which was also found in previous
studies.6,50 The downward trends of PM2.5 were greater before
the 2000s than those in the early years of the 21st century,
which was also summarized in another study focusing on NO2
pollution. The reason was attributed to increasing NOx
emissions from road traffic.5

The overestimation in the spring of 2003 in England could
be partly attributed to relatively high concentrations of PM2.5
composition from aerosol reanalysis data (Figure S22 of the
Supporting Information), which were among the most
important predictor variables in terms of prediction attribution,

as shown in Figure S23 of the Supporting Information. The
peaks of PM2.5 also occurred in the ACTM simulations, as
shown in Figure S10 of the Supporting Information. We are
not sure whether the overestimation of our predictions and the
simulations was biased because ground observations were
scarce. The year 2003 was recorded as a high pollution year for
PM10,

7 and nitrate and SO2 emissions were also high in
2003;51 therefore, the reasons for the discrepancy need further
careful investigation.

4.3. Limitations. This study has some limitations. First, the
way to determine the values of the weights was based on trials
and errors instead of theoretical analysis of the characteristics
of the data samples. Because the training samples are high-
dimensional, new approaches are needed to determine which
part of the augments contributes more to the model
performance. Second, evidence of the reliability of the model
prior to 2000 was relatively sparse, consisting of statistics or
sporadic samples. We did not use in situ measurements of
PM10, black smoke, visibility data, and gas pollutants, like SO2,
before 2000 to estimate the historical trends of PM2.5 in this
study because of their inconsistency in monitoring techni-
ques18 and locations. As a next step, we could try to figure out
more patterns of PM2.5 pollution from these observations.

4.4. Implications. The methods developed in this study,
which fuse long-term in situ measurements and various
geospatial factors, could be applied to other regions with
abundant long-term data, such as the United States and
Western Europe. More in situ observations, such as
meteorological factors and black smoke, could be further
incorporated to assist in capturing the historical trends.
The predictions derived in this study could benefit health

effect studies in the U.K. in several ways. First, spatiotempor-
ally resolved PM2.5 estimates could be aggregated to various
exposure metrics (e.g., seasonal mean and the 99th percentile
of the annual distribution of the 24 h average) depending upon
different study objectives. Second, our robust historical
estimates over 4 decades could be combined with long-term
cohorts in the U.K. to assess the life course or early exposure of
participants to air pollution. Third, the model performed better
in densely populated urban agglomerations, whereas ACTMs
often have the highest uncertainty level in urban areas,49

making predictions from our study a good input for
epidemiological studies focusing on urban populations.
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