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Background: Recent studies have reported associations between global climate change and mortality. However,
future projections of temperature-related out-of-hospital cardiac arrest (OHCA) have not been thoroughly eval-
uated. Thus, we aimed to project temperature-related morbidity for OHCA concomitant with climate change.
Methods:We collected national registry data on all OHCA cases reported in 2005–2015 from all 47 Japanese pre-
fectures. We used a two-stage time series analysis to estimate temperature-OHCA relationships. Time series of
current and future dailymean temperature variationswere constructed according to four climate change scenar-
ios of representative concentration pathways (RCPs) using five general circulation models. We projected excess
morbidity for heat and cold and the net change in 1990–2099 for each climate change scenario using the assump-
tion of no adaptation or population changes.
Results: During the study period, 739,717 OHCAs of presumed cardiac origin were reported. Net decreases in
temperature-related excess morbidity were observed under higher emission scenarios. The net change in
2090–2099 compared with 2010–2019 was −0.8% (95% empirical confidence interval [eCI]: −1.9, 0.1) for a
mild emission scenario (RCP2.6), −2.6% (95% eCI: −4.4, −0.8) for a stabilization scenario (RCP4.5), −3.4% (95%
eCI: −5.7, −1.0) for a stabilization scenario (RCP6.0), and − 4.2% (95% eCI: −8.3, −0.1) for an extreme emission sce-
nario (RCP8.5).
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Conclusions: Our study indicates that Japan is projected to experience a substantial net reduction in OHCAs in
higher-emission scenarios. The decrease in risk is limited to a specific morbidity cause, and a broader assessment
within climate change scenarios should consider other direct and indirect impacts.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Climate change is widely recognized as the most significant global
health threat of the 21st century, and tackling climate change could be
the greatest global health opportunity (Watts et al., 2015). The fifth In-
tergovernmental Panel on Climate Change (IPCC) report indicates that
high-end emissions scenarios project increases in global mean temper-
atures of between 2.6 and 4.8 °C by the end of the century (Pachauri
et al., 2014). While a number of important human diseases have been
associated with shifts in climate, a lack of long-term, high-quality data
and a significant influence from socio-economic factors has led to
some uncertainty in attributing any increase or re-emergence of dis-
eases to climate change (Patz et al., 2005). Recent studies have shown
that climate change has the potential to substantially increase
temperature-related mortality (Benmarhnia et al., 2014; Gasparrini
et al., 2017; Hajat et al., 2014; Lee and Kim, 2016). However, the future
impact of health threats arising from climate change can differ quite sig-
nificantly among diseases (Watts et al., 2015), and the impacts of cli-
mate change on morbidity has not been thoroughly evaluated.

Sudden cardiac arrest is a major contributor to morbidity and mor-
tality in the general population, and accounts for almost 10–20% of all
deaths (Field et al., 2010). In particular, out-of-hospital cardiac arrest
(OHCA) is characterized by unexpected collapse due to a cardiac disor-
der (Tian and Qiu, 2017). Although resuscitation rates are generally im-
proving globally, OHCA is a leading global cause of mortality (Nichol
et al., 2008; Wissenberg et al., 2013). Coronary artery disease is a key
contributor to sudden cardiac arrest (Mozaffarian et al., 2015). How-
ever, OHCA is multifactorial and complex in nature (Patz et al., 2005).
Several studies that aimed to quantify the burden of OHCA have had dif-
ficulty accurately accounting for potential adaptation to climate change
over time and place. Meanwhile, OHCA remains a prime and significant
cause of death due to cardiovascular diseases. It is therefore paramount
to focus onOHCA to improve prediction estimates and to aid in prioritiz-
ing mitigation and adaptation policies to climate change in the future.

As concerns associated with climate change have increased over the
past few decades, there has been emerging evidence supporting a rela-
tionship between OHCA and environmental factors such as extreme
weather conditions like heat and cold events (Onozuka and Hagihara,
2017a, c, e). For example, several studies have shown a positive associ-
ation between extremely high and low temperatures and OHCA risk
(Onozuka and Hagihara, 2017a). Moreover, recent studies have also
shown that themajority of temperature-related OHCA burden is attrib-
utable to low temperatures, and that the effect of extreme temperatures
is substantially lower than that of moderate temperatures
(Onozuka and Hagihara, 2017c). These findings suggest that climate
change may raise heat-related morbidity, while concomitantly re-
ducing cold-related morbidity. However, future projections of
temperature-related excess morbidity due to OHCA according to cli-
mate change scenarios have not been studied. Furthermore, the de-
gree to which the anticipated reduction in cold-related morbidity
can counter the rise in heat-related morbidity remains to be deter-
mined. This data will be important for the development of coordi-
nated and evidence-based climate change and public health
methods to prevent climate change-related OHCA.

Here, we aimed to project the future impact of climate change on
temperature-attributable OHCA morbidity using Japanese national reg-
istry data from all OHCA cases reported in 2005–2015 that were as-
sumed to be of cardiac origin.
2. Methods

2.1. Study design

We used the same study design and statistical framework described
in detail elsewhere (Gasparrini et al., 2017; Vicedo-Cabrera et al., 2019).
Briefly, we used a two-stage time-series analysis to predict the associa-
tion between temperature and daily morbidity due to OHCA in all 47
Japanese prefectures. Additionally, we acquired daily mean tempera-
ture time-series according to climate change scenarios of the four repre-
sentative concentration pathways (RCPs), RCP2.6, RCP4.5, RCP6.0, and
RCP8.5. We merged these data to estimate future projections of excess
morbidity attributable to temperature.

2.2. Ethics approval

This study was approved by the Ethics Committee of the Kyushu
University Graduate School of Medical Sciences. Written informed con-
sent was not required because of the retrospective observational nature
of this study, which used national registry data, and the fact that en-
rolled subjects were deidentified by the Fire and Disaster Management
Agency (FDMA).

2.3. Data sources

We used national registry data from the FDMA regarding all OHCA
cases that were reported from 2005 to 2015 in all 47 Japanese prefec-
tures. According to Japan's Fire Service Act, municipal government-
enlisted emergency medical services (EMSs) are provided at around
800 fire stations and related dispatch centers across Japan. Given that
EMS providers do not have the authority to terminate resuscitation in
the field, all EMS-treated OHCA cases are transported to a hospital.
EMS personnel summarize each OHCA case in conjunction with the
physician in charge according to the standardized Utstein-style
reporting guidelines for cardiac arrest (Hagihara et al., 2012). The phy-
sician in charge together with the EMS personnel clinically ascertained
the cause of cardiac arrest (i.e., presumed cardiac or non-cardiac). All ar-
rests were considered to be of cardiac origin unless the cause was
drowning, trauma, drug overdose, exsanguination, asphyxia, or any
other obvious non-cardiac cause. Fire stations with dispatch centers in
the 47 prefectures send their data to the FDMA, where the data is incor-
porated into the national registry system on the FDMA database server.
According to the Fire Service Act, all OHCA cases must be registered in
Japan. The national registry data for OHCA cases is therefore regarded
as comprehensive across the country. The FDMA's computer system
was used to check and validate the data for consistency (Kitamura
et al., 2016). We included all patients that experienced an OHCA of pre-
sumed cardiac origin, and we extracted the daily time-series of OHCA
cases from the national registry database.

We also acquired data on daily mean temperatures from the Japan
Meteorological Agency. Data from one weather station positioned in
an urban area of the capital city was used as representative data for
the region for each prefecture because these were synoptic climatolog-
ical stations and intended to capture macro-scale weather for each pre-
fecture. Daily mean temperatures were computed as 24-hour averages
according to hourly measurements. Daily mean temperature was used
as the main exposure index as it is indicative of exposure throughout
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the day and can be readily interpreted for decision-making purposes
(Guo et al., 2011, 2014).

2.4. Scenario models

We estimated the projections of future temperature-related OHCA
under four climate change scenarios using models of climate change
and morbidity. First, we acquired time series data for daily mean tem-
peratures according to four climate change scenarios of RCPs (van
Vuuren et al., 2011a). The four RCPs (RCP2.6, RCP4.5, RCP6.0, and
RCP8.5) present rising greenhouse gas concentration trajectories:
RCP2.6 models a mild emission scenario in which peaks in radiative
forcing at ~3 W/m2 before 2100 and then declines to 2.6 W/m2 by
2100, RCP4.5 models a stabilization scenario in which total radiative
forcing is stabilized shortly after 2100, without overshooting the long-
run radiative forcing target level of 4.5W/m2, RCP6.0models a stabiliza-
tion scenario in which total radiative forcing is stabilized shortly after
2100, without overshoot pathway to 6.0 W/m2, by the application of a
range of technologies and strategies for reducing greenhouse gas emis-
sions, and RCP8.5 models an extreme emission scenario in which rising
radiative forcing pathway leading to 8.5 W/m2 by 2100 (van Vuuren
et al., 2011a). The RCPs were generated following collaborations be-
tween integrated assessment modelers, climate modelers, terrestrial
ecosystem modelers, and emission inventory experts (van Vuuren
et al., 2011a). Future projections of daily mean temperatures under
each RCP were then developed using general circulation models
(GCMs) (Warszawski et al., 2014). GCMs were designed to enable the
quantification of representation of historical, current, and projected cli-
mate consistent with scenarios of increases in radiative atmospheric
forces, summarized by RCPs. The Inter-Sectoral ImpactModel Intercom-
parison Project (ISI-MIP) database includes daily temperature series for
each RCP scenario of five GCMs (GFDL-ESM2M (Dunne et al., 2012,
2013), HadGEM2-ES (Jones et al., 2011), IPSL-CM5A-LR (Mignot and
Bony, 2013), MIROC-ESM-CHEM (Watanabe et al., 2011), and
NorESMI-M (Bentsen et al., 2013; Iversen et al., 2013)), and these five
GCMs were regarded as the representatives of the full range of projec-
tions of future climate based on the current existing scientific literature
within the fifth phase of the Climate Model Intercomparison Project
(CMIP5) models (Taylor et al., 2012; Warszawski et al., 2014). The ISI-
MIP database (https://www.isimip.org/) contains time series of daily
mean temperatures for historical (1960–2005) and projected
(2006–2099) periods, which are bias-corrected and downscaled to
0.5° × 0.5° spatial resolution (Warszawski et al., 2014). GCMswere gen-
erated by considering the difference in climate change impact at varying
levels of global warming according to the four RCPs to produce the
highest and lowest end-of-century forcings (Warszawski et al., 2014).
When the modelled daily temperature series are applied to exposure-
response relationships estimated using observed daily time series for
daily mean temperature, deviations between the modelled and ob-
served daily temperature series may produce biased results in the im-
pact projections. Therefore, the modelled daily temperature series
were corrected using the bias-correction method, which recalibrated
using the monthly mean and the daily variability around the monthly
mean of observed daily temperature series (Hempel et al., 2013). We
calculated the projected daily time series of OHCAs as the mean ob-
served count for each day of the year, and repeated this across the pro-
jection period (1990–2099).

2.5. Statistical analysis

2.5.1. Estimation of exposure-response relationships
We used two-stage time series analysis to predict the prefecture-

specific non-linear lag impact of temperature on OHCA, as described
previously (Gasparrini et al., 2016; Onozuka and Hagihara, 2017c;
Zhang et al., 2019, 2017). Briefly, first, we investigated the association
between temperature and OHCA in individual prefectures using a
time-series quasi-Poisson regression model combined with a distrib-
uted lag non-linear model, adjusting for season, long-term trends, and
day of the week. We examined lag periods of up to 21 days to consider
the delayed impact of low temperatures. Second, we combined
prefecture-specific estimates using multivariate meta-regression
models to predict the nationwide non-linear temperature-OHCA associ-
ation. This method has been described in detail elsewhere (Gasparrini
et al., 2017; Vicedo-Cabrera et al., 2019).

2.5.2. Projection of the effect on morbidity
We projected excess morbidity due to temperature using the daily

temperature andmorbidity time-seriesmodel according to the assump-
tion of no adaptation or population changes, as described previously
(Gasparrini et al., 2016; Onozuka and Hagihara, 2017c). Briefly, we de-
termined the minimum morbidity temperature using the lowest value
of the total cumulative relative risk between temperature and OHCA.
We used the minimum morbidity temperature as a reference to com-
pute the attributable risk by re-centering the natural cubic spline. This
value was regarded as the optimal temperature. The total attributable
number of OHCAs as a result of non-optimal temperatures was com-
puted as the sum of contributions from all days in the series. The ratio
of this value to the total number of OHCAs was regarded as the total at-
tributable fraction. Components that were attributable to low and high
temperatures were computed by accumulating the subsets correspond-
ing to days with temperatures below or above the minimummorbidity
temperature. First, we estimated the excess morbidity for each prefec-
ture and combinations of GCMs and RCPs. Second, we computed attrib-
utable fractions as GCM-ensemble means according to decade and RCP
using the respective total number of OHCAs as the denominator.
Monte Carlo simulationswere used to compute empirical confidence in-
tervals (eCIs), calculate the uncertainty in both the estimated exposure-
lag-response association and climate projections among GCMs. Details
of this method were described previously (Gasparrini et al., 2017;
Vicedo-Cabrera et al., 2019).

For sensitivity analysis, modeling selections were tested by control-
ling for different degrees of freedom for time trends (6 and 10 degrees of
freedom per year), by choosing different lags (14 and 28 days), and by
including or excluding different confounding factors (relative humidity,
public holiday, and day of the week). All statistical analyses were con-
ducted using R 3.5.0 (R Core Team, R Foundation for Statistical Comput-
ing, Vienna, Austria), specifically using the dlnm and mvmeta packages.

3. Results

A total of 739,717 OHCA cases of presumed cardiac origin were reg-
istered between January 1, 2005 and December 31, 2015 in the 47 pre-
fectures of Japan. The daily mean temperature was 15.6 °C, and the
prefecture-specific daily mean temperature ranged from 9.4 °C in Hok-
kaido Prefecture to 17.4 °C in Fukuoka Prefecture (Figs. 1, S1 and
Table S1 in the Supplement).

The variation in the mean temperature in the current period
(2010–2019) and the projected increase at the end of the 21st century
(2090–2099) in the four RCP scenarios in Japan are shown in Fig. 2
and Table 1. We projected a steep rise in mean temperatures under
high-end emission scenarios (RCP6.0 and RCP8.5); however, this rise
slowed or tended to be reduced after a number of decades under climate
change scenarios that assume greenhouse gas mitigation policies
(RCP2.6 and RCP4.5) (Figs. 2 and S2 in the Supplement). By the end of
the 21st century, a drop in greenhouse gas emissions may avert
warming in Japan, with a mean rise in temperature of 0.6 °C (range:
0.4–0.9) under RCP2.6 compared to 4.0 °C (range: 3.0–4.9) under
RCP8.5. The respective data from each prefecture are shown in Figs. S2
and S3 in the Supplement.

Projected trends in heat- and cold-related excess morbidity accord-
ing to three RCPs in Japan are summarized in Fig. 3 and Table 1. Ourfind-
ings showed a common pattern of a reduction in cold-relatedmorbidity

https://www.isimip.org/


Fig. 1. The geographic distribution of the 47 Japanese prefectures and climate stations. The
colors represent different ranges of mean daily temperature during the study period.
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and mild rise in excess morbidity due to heat across the scenarios. The
projected slopes were steeper under RCP8.5, while the trends were
shallower throughout the 21st century under scenarios that assume
mitigation strategies. Cold-related excess morbidity is projected to be
reduced from 19.9% (95% eCI: −0.1, 33.4) in 2010–2019 to 13.8% (95%
Fig. 2.Decadal temperature trends in Japan by scenario. The graph shows the projected in-
crease in temperature (°C, GCM-ensemble average), averaged by decade and climate
change scenario, compared to the current period (2010–2019). GCM=general circulation
model.
eCI: −2.5, 25.5) in 2090–2099 under scenarios of intense warming
(RCP8.5), and there is a large degree of uncertainty for cold-relatedmor-
bidity. In contrast, heat-related excess morbidity is projected to rise
from 0.4% (95% eCI: 0.1, 0.6) to 2.4% (95% eCI: 0.5, 4.2) across the
same period and conditions. The respective data from each prefecture
are shown in Figs. S4 and S5 in the Supplement.

Temporal changes in excess morbidity under three different RCPs in
Japan are summarized in Fig. 4 and Table 1. There was a marked net re-
duction in excess morbidity, ranging from −0.8% (95% eCI −1.9, 0.1)
under RCP2.6 to −4.2% (95% eCI −8.3, −0.1) under RCP8.5. The respective
data from each prefecture are shown in Fig. S6 and Tables S2–S5 in the
Supplement.

The sensitivity analysis revealed that varying the choice of model
had little effect on the estimates (Table S6 in the Supplement).

4. Discussion

We investigated projections of the nationwide impact of tempera-
ture on OHCA in Japan according to different climate change scenarios
using recently developed study designs and advanced statistical
methods. We found that temperature-related excess morbidity is ex-
pected to be reduced under higher emission scenarios. To our knowl-
edge, our study is the first to investigate the possible impact of
temperature changes according to climate change scenarios on OHCA.
Our findings indicate that climate change may have positive effects on
OHCA.

Our study shows that climate change may possibly result in a
marked reduction in temperature-related OHCA. We also found a
steep reduction in cold-related excess morbidity under higher emission
scenarios of global warming, and a small increase in heat-related excess
morbidity. These findings agree with those of recent studies, which pre-
dict that lower intensity warming and bigger reductions in cold-related
excess mortality could stimulate a minimal negative net effect in tem-
perate areas, including Japan (Gasparrini et al., 2017). Moreover,
temperature-related mortality due to acute ischemic heart disease is
projected to remain stable over time under changing climate conditions
in China (Li et al., 2018). However, another study in China projected that
temperature-related cardiovascular disease mortality will increase
under different RCP scenarios (Zhang et al., 2018). These findings indi-
cate that ambient temperaturesmay impact the various subtypes of car-
diovascular diseases in differing ways (Lin et al., 2009). Further, the
mechanisms governing cardiac events involve multiple factors and
complex interactions (Woodhouse et al., 1994). Although the physio-
logical mechanism underlying temperature-related cardiovascular
events remains to be elucidated, our results emphasize the need for ad-
ditional studies on the projections of temperature-related excess mor-
bidity for cardiovascular diseases.

The net reduction in OHCA as a result of global warmingmay be ex-
plained by several mechanisms. First, increasing temperature due to
global warming may reduce health problems related to low tempera-
tures, which can lead to offset the increase inmorbidity by high temper-
atures. A recent study has shown that, although both high and low
temperatures are responsible for OHCAburden,mostOHCA cases are at-
tributable to low temperatures (Onozuka andHagihara, 2017c). Regard-
ing low temperature-related health problems, recent studies have
indicated that circulatory and coronary heart disease and ST-elevation
myocardial infarction (STEMI) mortality is increased with low temper-
atures (Schwartz et al., 2015). It is possible that low temperatures trig-
ger sympathetic stimulation and a rise in cardiacworkload, which could
stress a person with severe coronary stenosis and/or advanced heart
failure beyond their compensation threshold (Izzo Jr. et al., 1990;
Schwartz et al., 2015; Wolf et al., 2009). Second, low temperatures
may contribute to the cardiovascular stress response by increasing
blood viscosity, changing heart rate variability, and impacting inflam-
matory responses (Keatinge et al., 1986). Low temperature periods
have been linked to high excess risk of heart failure, arrhythmia, and



Table 1
Heat-related, cold-related, and net excess morbidity (%) with 95% eCI by period and climate change scenario in Japan.

Scenario Projected increase in temperature
(2090–2099 vs 2010–2019)

Effect Period

2010–2019 2050–2059 2090–2099

RCP2.6 0.6 (0.4, 0.9) Heat 0.4 (0.1, 0.6) 0.7 (0.2, 1.4) 0.6 (0.2, 0.9)
Cold 19.9 (−0.1, 33.2) 18.6 (−0.9, 31.9) 18.9 (−0.7, 32.3)
Net – −1.0 (−2.3, −0.1) −0.8 (−1.9, 0.1)

RCP4.5 1.8 (1.4, 2.2) Heat 0.3 (0.1, 0.5) 0.8 (0.2, 1.4) 1.0 (0.2, 1.8)
Cold 20.1 (0.2, 33.4) 17.6 (−1.4, 30.7) 16.8 (−1.8, 29.8)
Net – −2.0 (−3.1, −0.8) −2.6 (−4.4, −0.8)

RCP6.0 2.5 (1.7, 3.0) Heat 0.3 (0.1, 0.5) 0.6 (0.2, 1.0) 1.4 (0.3, 2.8)
Cold 20.3 (0.3, 33.8) 18.2 (−1.1, 31.3) 15.9 (−2.1, 28.5)
Net – −1.9 (−3.1, −0.9) −3.4 (−5.7, −1.0)

RCP8.5 4.0 (3.0, 4.9) Heat 0.4 (0.1, 0.6) 1.0 (0.3, 1.8) 2.4 (0.5, 4.2)
Cold 19.9 (−0.1, 33.4) 16.8 (−1.8, 29.5) 13.8 (−2.5, 25.5)
Net – −2.5 (−4.8, −0.5) −4.2 (−8.3, −0.1)

Data on projected increase in temperature are average mean prefecture-specific temperature (range) as GCM-ensemble. RCP = representative concentration pathway. GCM = general
circulation model.
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atrial fibrillation (Medina-Ramon et al., 2006). Low temperatures raise
sympathetic tone, blood pressure, vascular resistance, fibrinogen level,
platelet count, some clotting factors, and blood viscosity, which can
raise the risk of plaque rupture, thrombosis, and STEMI mortality (Izzo
Jr. et al., 1990; Schwartz et al., 2015; Wolf et al., 2009). Furthermore,
those with reduced vitamin D levels are vulnerable to sudden cardiac
death during winter, suggesting that increasing vitamin D levels by ad-
equate sun exposure in the winter months may be significant for de-
creasing sudden cardiac death (Deo et al., 2011; Drechsler et al., 2010;
Giovannucci et al., 2008; Onozuka andHagihara, 2017b, d). Our findings
are therefore physiologically plausible and suggest that climate change
according to different levels of future global warmingmaymarkedly re-
duce OHCA.

Our findings suggest that variations in temperature-related excess
OHCA are proportional to the degree of global warming under each of
the RCP emission scenarios. We found that the largest net reduction in
excess morbidity was projected under RCP8.5, which assumes very
Fig. 3. Trends in heat-related and cold-related excessmorbidity in Japan. The graph shows
the excess morbidity by decade attributed to heat and cold under three climate change
scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Estimates are reported as GCM-ensemble
mean decadal fractions. The shaded areas represent 95% empirical confidence intervals
(eCIs). RCP = representative concentration pathway; GCM= general circulation model.
high greenhouse gas emissions (Pachauri et al., 2014). In contrast, the
net reduction in excessmorbidity is lower under RCP2.6,which assumes
a limited increase in global mean temperatures of 2 °C following climate
change adaptation and mitigation policies (van Vuuren et al., 2011b).
Although recent studies have reported the negative impacts of climate
change on mortality (Gasparrini et al., 2017), there may be inconsis-
tencies in the direction and magnitude of the impacts on mortality
andmorbidity due to climate change. Our results emphasize the impor-
tance of further investigation into projections of globalwarming and the
associated impacts on mortality and morbidity due to different causes.

Our results have practical implications for refining or adjusting esti-
mates for climate change-related OHCA in future public health policies.
Our study projects a largest decrease in net excess OHCAmorbidity due
to climate change under high-emission scenarios. The majority of the
excess morbidity was attributable to low temperatures, while heat
was only associated with a small fraction of excess morbidity. Addition-
ally, the reduction in temperature-related net excess morbidity is
Fig. 4. Temporal change in excess morbidity in Japan. The graph shows the difference in
excess morbidity by decade compared with 2010–2019 under three climate change sce-
narios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Estimates are reported as GCM-ensemble
means. The black vertical segments represent 95% empirical CIs (eCIs) of net difference.
RCP = representative concentration pathway; GCM = general circulation model.
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expected to be significant in scenarios of high greenhouse gas emis-
sions. These findings are important for the development of disease-
specific public health policies, and for informing the ongoing interna-
tional discussion on the health impacts of climate change.

Therewere several limitations in our study. First,while our projections
of temperature-OHCA relationships according to future warming scenar-
ios enabled isolation of the effects of climate change, they did not account
for important factors such as demographic changes and adaptation
(Arbuthnott et al., 2016; Hajat et al., 2014; Nordio et al., 2015; O'Neill
et al., 2014). Especially, since a recent study suggested that gender and
age are vulnerability factors for the effect of temperature on OHCA
(Onozuka and Hagihara, 2017c), demographic and adaptation changes
in the future can alter the impact of climate change on OHCA. Therefore,
our results should not be interpreted as predictions of future excess mor-
bidity but rather possible outcomes under well-defined but hypothetical
scenarios. Second, our projections of temperature-related excess morbid-
ity are subject to considerable uncertainty, especially those associated
with the net impact, because of both variability in the climate models
and imprecision in the predicted exposure-response correlation
(Benmarhnia et al., 2014). Third, we used available outdoor monitoring
data from one representativeweather station to represent population ex-
posure to the mean temperature. Thus, exposure measurement bias and
misclassification should not be ignored. These factors might affect the in-
terpretation of our findings, and additional studies using more precise
modeling methods are required to resolve these issues.

In summary, our study indicates that Japan is projected to experi-
ence a substantial net reduction inOHCAunder higher-emission scenar-
ios. The decrease in risk is limited to a specific morbidity cause, and a
broader assessment of cardiovascular disease morbidity within climate
change scenarios should consider other direct and indirect impacts.
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